Parus16.ru

Парус №16
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Решение задач по теме Количество информации (10кл)

В одном бите памяти содержится информации

Решение задач по теме «Количество информации» (10кл)

Пример 1. В коробке 32 карандаша, все карандаши разного цвета. Наугад вытащили красный. Какое количество информации при этом было получено?

Решение.
Так как вытаскивание карандаша любого цвета из имеющихся в коробке 32 карандашей является равновероятным, то число возможных событий равно 32.
N = 32, I = ?
N = 2 I , 32 = 2 5 , I = 5 бит.
Ответ: 5 бит.

Пример 2.В коробке 50 шаров, из них 40 белых и 10 чёрных. Определить количество информации в сообщении о вытаскивании наугад белого шара и чёрного шара.

Решение.
Вероятность вытаскивания белого шара
P1 = 40/50 = 0,8
Вероятность вытаскивания чёрного шара
P2 = 10/50 = 0,2
Количество информации о вытаскивании белого шара I1 = log2(1/0,8) = log21,25 = log1,25/log2 = 0,32 бит
Количество информации о вытаскивании чёрного шара I2 = log2(1/0,2) = log25 = log5/log2 » 2,32 бит
Ответ: 0,32 бит, 2,32 бит

Пример 3. В озере живут караси и окуни. Подсчитано, что карасей 1500, а окуней — 500. Сколько информации содержится в сообщениях о том, что рыбак поймал карася, окуня, поймал рыбу?

Решение.
События поимки карася или окуня не являются равновероятными, так как окуней в озере меньше, чем карасей.
Общее количество карасей и окуней в пруду 1500 + 500 = 2000.
Вероятность попадания на удочку карася
p1 = 1500/2000 = 0,75, окуня p2 – 500/2000 = 0,25.
I1 = log2(1/p1), I1 = log2(1/p2), где I1 и I2 – вероятности поймать карася и окуня соответственно.
I1 = log2(1 / 0,75) = 0,43 бит, I2 = log2(1 / 0,25) = 2 бит – количество информации в сообщении поймать карася и поймать окуня соответственно.
Количество информации в сообщении поймать рыбу (карася или окуня) рассчитывается по формуле Шеннона
I = — p1log2p1 — p2log2p2
I = — 0,75*log20,75 — 0,25*log20,25 = — 0,75*(log0,75/log2)-0,25*(log0,25/log2) =
= 0,604 бит = 0.6 бит.
Ответ: в сообщении содержится 0,6 бит информации.

Пример 4. Какое количество информации несет в себе сообщение о том, что нужная вам программа находится на одной из восьми дискет?

Решение.
Количество информации вычисляется по формуле: 2 i = N, где i — искомая величина, N — количество событий. Следовательно, 2 3 =8.
Ответ: 3 бита.

Пример 5. Заполнить пропуски числами:

а) 5 Кбайт = __ байт = __ бит, б) __ Кбайт = __ байт = 12288 бит; в) __ Кбайт = __ байт = 2 13 бит; г) __Гбайт =1536 Мбайт = __ Кбайт; д) 512 Кбайт = 2__ байт = 2__ бит.

Решение.
а) 5 Кбайт = 5120 байт =40 960 бит,
б) 1,5 Кбайт = 1536 байт = 12 288 бит;
в) 1 Кбайт = 2 10 байт = 2 13 бит;
г) 1,5 Гбайт = 1536 Мбайт = 1 572 864 Кбайт;
д) 512 Кбайт = 2 19 байт = 2 22 бит.

Пример 6. Какова мощность алфавита, с помощью которого записано сообщение, содержащее 2048 символов, если его объем составляет 1/512 часть одного мегабайта?

Решение.
1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2 i = N; 2 8 = 256 символов

Ответ: 1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2 i = N; 2 8 = 256 символов.

Пример 7.Книга, набранная с помощью компьютера, содержит 150 страниц; на каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге?

Решение.
Мощность компьютерного алфавита равна 256. Один символ несет 1 байт информации.
Значит, страница содержит 40*60=2400 байт информации. Объем всей информации в книге: 2400*150 = 360 000 байт.
Ответ: 360 000 байт.

Пример 8. Для передачи секретного сообщения используется код, состоящий из десяти цифр. При этом все цифры кодируются одним и тем же (минимально возможным) количеством бит. Определите информационный объем сообщения длиной в 150 символов.

Решение.
Для кодировки одной из 10 цифр необходимо 4 бита. Это получаем из 2 3 < 10 < 2 4 . Объём 150 символов получим 150*4=600(бит).
Ответ: 600 бит.

Пример 9.В кодировке Unicode на каждый символ отводится два байта. Определите информационный объем слова из двадцати четырех символов в этой кодировке.

Решение.
I= K*i; I = 24*2 байт = 48 байт = 48*8бит = 384 бит.
Ответ: 384 бита.

Пример 10.В рулетке общее количество лунок равно 128. Какое количество информации мы получаем в зрительном сообщения об остановке шарика в одной из лунок?

Решение.
Количество информации вычисляется по формуле: 2 i = N, где i — искомая величина, N — количество событий.
2 i =128. Следовательно, i=7.
Ответ: 7 бит.

Тема: Вычисление информационного объема сообщения.

  1. Единицы измерения информации
    В 1 бит можно записать один двоичный символ.
    1 байт = 8 бит
    В кодировке ASCII в один байт можно записать один 256 символьный код
    В кодировке UNICODE один 256 символьный код занимает в памяти два байта
    1 килобайт = 1024 байт
    1 мегабайт = 1024 килобайт
    1 гигабайт = 1024 мегабайт
    1 терабайт = 1024 гигабайт
  2. Формула Хартли 2 i = N где i- количество информации в битах, N — неопределенность
  3. Таблица степеней двойки, которая показывает сколько информации можно закодировать с помощью i — бит

Например: двоичный текст 01010111 занимает в памяти 8 бит
Этот же текст в кодировке ASCII занимает 8 байт или 64 бита
Этот же текст в кодировке UNICODE занимает 16 байт или 128 бит.

Не забывайте, что пробелы надо тоже считать за символы поскольку они также набираются на клавиатуре и хранятся в памяти.

Мощность алфавита — это количество символов в алфавите или неопределенность из формулы Хартли.

Информационный вес одного символа — это значение i из формулы Хартли.

Отсюда можно сделать вывод, что не существует алфавита, состоящего из одного символа, поскольку тогда информационный вес этого символа был бы равен 0.

Чтобы перевести байты в килобайты надо число байтов поделить на 1024.
Например: в 2048 байтах будет 2 килобайта. И так далее по следующим единицам измерения.

Чтобы перевести байты в биты надо число байт умножить на 8.
Например: в 3 байтах будет 24 бита.

Чтобы перевести килобайты в байты надо число килобайт умножить на 1024.
Например: в 3 килобайтах будет 3072 байта и соответственно 24576 бит. И так далее.

Если 128 символьным алфавитом записано сообщение из 5 символов, то объем сообщения — 35 бит.
Мощность алфавита — 128. Это неопределенность. Значит один символ занимает в памяти 7 бит, тогда 5 символов занимают в памяти 35 бит.

Чтобы определить час прибытия поезда, надо задать 5 вопросов, иначе говоря, получить 5 бит информации, поскольку неопределенность равна 24.

Количество символов в тексте = Информационный вес всего текста : Информационный вес одного символа

1. Задача на использование первой основной формулы.
Каждый символ алфавита записывается с помощью 4 цифр двоичного кода. Сколько символов в этом алфавите?
Каждый символ алфавита записывается с помощью 6 цифр двоичного кода. Сколько символов в этом алфавите?
Каждый символ алфавита записывается с помощью 3 цифр двоичного кода. Сколько символов в этом алфавите?
Каждый символ алфавита записывается с помощью 5 цифр двоичного кода. Сколько символов в_этом алфавите?

2. Обратная задача на использование первой основной формулы.
Алфавит для записи сообщений состоит из 32 символов. Каков информационный вес одного символа? Не забудьте указать единицу измерения.
Алфавит для записи сообщений состоит из 64 символов. Каков информационный вес одного символа? Не забудьте указатьединицу измерения.
Алфавит для записи сообщений состоит из 16 символов. Каков информационный вес одного символа? Не забудьте указать единицу измерения.
Алфавит для записи сообщений состоит из 128 символов. Каков информационный вес одного символа? Не забудьте указать единицу измерения.

3. Задача НА использование второй формулы.
Информационный объем текста, набранного на компьютере с использованием кодировки UNICODE (каждый символ кодируется 16 битами), — 4 Кб. Определить количество символов в тексте.
Информационное сообщение объемом 1,5 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита в битах.
Информационный объем текста, набранного на компьютере с использованием кодировки UNICODE (каждый символ кодируется 16 битами), — 0,5 Кб. Определить количество символов в тексте.
Информационное сообщение объемом 3 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита в битах.

4. Задача на соотношение единиц измерения информации без использования степеней.
Объем информационного сообщения составляет 8192 бита. Выразить его в килобайтах.
Информационный объем сообщения равен 12 288 битам. Чему равен объем того же сообщения в килобайтах?
Объем информационного сообщения составляет 1 6 384 бита. Выразить его в килобайтах.
Информационный объем сообщения равен 4096 битам. Чему равен объем того же сообщения в килобайтах?

5. Задача на соотношение единиц измерения информации с использованием степеней.
Сколько бит информации содержит сообщение объемом 4 Мб? Ответ дать в степенях 2.
Сколько бит информации содержит сообщение объемом 16 Мб? Ответ дать в степенях 2.
Сколько бит информации содержит сообщение объемом 2 Мб? Ответ дать в степенях 2.
Сколько бит информации содержит сообщение объемом 8 Мб? Ответ дать в степенях 2.

6. Задача на использование двух формул.
Сообщение, записанное буквами из 25б-символьного алфавита, содержит 256 символов. Какой объем информации оно несет в килобайтах?
Сообщение, записанное буквами из 16-символьного алфавита, содержит 512 символов. Какой объем информации оно несет в килобайтах?
Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если объем ею составил 1/16 часть килобайта?
Объем сообщения, содержащего 16 символов, составил 1/512 часть килобайта Каков размер алфавита.

7. «Текстовая» задача на использование основной формулы.
Сколько существует различных звуковых сигналов, состоящих из последовательностей коротких и длинных звонков? Длина каждого сигнала — 6 звонков.
Световое табло состоит из лампочек, каждая из которых может находиться в двух состояниях («включено» или «выключено»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 150 различных сигналов?
Зрительный зал представляет собой прямоугольную область зрительских кресел: 12 рядов по 10 кресел. Какое минимальное количество бит потребуется для кодирования каждого места в автоматизированной системе?
Каждый пиксель цветного изображения кодируется 1 байтом. Сколько цветов в таком изображении?

8. «Текстовая» задача на использование двух формул.
Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 20 до 100%, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений,
Метеорологическая станция ведет наблюдение за атмосферным давлением. Результатом одного измерения является целое число, принимающее значение от 700 до 780 мм ртутного столба, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений, Определите информационный объем результатов наблюдений.
Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 40 до 100%, которое записывается при помощи минимально возможного количества бит. Станция сделала 50 измерений, Определите информационный объем результатов наблюдений.
Метеорологическая станция ведет наблюдение за атмосферным давлением. Результатом одного измерения является целое число, принимающее значение от 740 до 760 мм ртутного столба, которое записывается при помощи минимально возможного количества бит. Станция сделала 70 измерений. Определите информационный объем результатов наблюдений.

9. Задача о передаче информации с помощью модема.
Скорость передачи данных через АDSL-соединение равна 512000 бит/с. Через данное соединение передают файл размером 1500 Кб. Определите время передачи файла в секундах.
Скорость передачи данных через АDSL-соединение равна 1024000 бит/с. Через данное соединение передают файл размером 2500 Кб. Определите время передачи файла в секундах.
Скорость передачи данных через АDSL-соединение равна 1024000 бит/с. Передача файла через данное соединение заняла 5 секунд. Определите размер файла в килобайтах.
Скорость передачи данных через АDSL-соединение равна 512000 бит/с. Передача файла через данное соединение заняла 8 секунд. Определите размер файла в килобайтах.

10. Задача о передаче графической информации.
Определите скорость работы модема, если за 256 с он может передать растровое изображение размером 640 х 480 пикселей. На каждый пиксель приходится 3 байта.
Сколько секунд потребуется модему, передающему информацию со скоростью 56 000 бит/с, чтобы передать цветное растровое изображение размером 640 х 480 пикселей, при условии, что цвет каждого пикселя кодируется тремя байтами?
Определите скорость работы модема, если за 132 с он может передать растровое изображение размером 640 х 480 пикселей. На каждый пиксель приходится 3 байта.
Сколько секунд потребуется модему, передающему информацию со скоростью 28800 бит/с, чтобы передать цветное растровое изображение размером 640 х 480 пикселей, при условии, что цвет каждого пикселя кодируется тремя байтами?

В ячейке оперативной памяти содержится информации

Внутренняя память – один из важнейших элементов компьютера, позволяющий ему корректно работать. В ней содержится информация, к которой обращается компьютер в процессе работы.

Внутренняя память компьютера состоит из нескольких частей

  1. Оперативная память
  2. Кэш-память
  3. Специальная память

Оперативная память напрямую связана с процессором, в ней сохраняются программы и данные, необходимые для реализации этих программ. Процессор компьютера может работать только с данными, которые содержатся в оперативной памяти.

Она состоит из группы кристаллических ячеек, в которых хранится информация. Минимальный объем информации – бит. Это объем информации в один двоичный знак (0 или 1). И соответственно в каждой ячейке оперативной памяти сохраняется один бит информации. Свойство памяти, помогающее распределять информацию по ячейкам, разделять ее на мелкие составные части называют дискретностью. 8 бит составляют один байт. А каждый байт информации имеет в памяти компьютера свой адрес. Процессор отыскивает нужные ему данные во внутренней памяти именно по адресу. Еще более крупная единица хранения информации – машинное слово. Оно состоит из нескольких байтов, которые процессор обрабатывает в ходе одной операции. Объем оперативной памяти в современных компьютерах постоянно растет и достигает уже нескольких Гигабайт.

С точки зрения действия различают два вида оперативной памяти: статическую и динамическую. Статическая память проще в использовании, но дороже, и она в состоянии хранить меньший объем информации. Триггер динамической памяти более быстрый, но значительно сложнее и дороже. В современных компьютерах применяются оба вида памяти.

И статическая и динамическая память сохраняет информацию, которая кодируется с помощью электрического сигнала. Поэтому при выключении электричества происходит потеря информации. Таким образом понятно, что оперативная память нужна для временного хранения данных.

Оперативная память – это набор микросхем, которые располагаются на плате компьютера. Части (или модули) оперативной памяти могут отличаться количеством контактов (SIMM или DIMM), быстродействием, объемом размещенной на них информации.

Другой важной характеристикой памяти является быстродействие, которое определяется максимальным числом операций, которые может выполнять устройство за единицу времени. Чтобы компьютер работал эффективно и быстро, необходимо, чтобы быстродействие компьютера соответствовало этой характеристики памяти.

Кэш-память обеспечивает согласованную работу различных устройств компьютера, компенсируя разницу в быстродействии процессора и оперативной памяти. Этим видом памяти управляет контроллер, который прогнозирует команды используемые в данный момент процессором и своевременно подкачивает их из всего объема оперативной памяти.

В специальную память компьютера входят следующие виды памяти:

  1. Постоянная память
  2. Перепрограммируемая память
  3. Видеопамять
  4. Память CMOS RAM

На них записана информация, которую не может изменить пользователь компьютера: данные о конфигурации устройств, о составе оборудования и режимах его работы.

Знания о видах внутренней памяти помогают пользователю грамотно и безопасно эксплуатировать компьютер, максимально используя его возможности.

Внутренняя память компьютера

Популярные доклады

Название гортензии означает бочка с водой, что подразумевает её любвеобильность к воде, однако если переусердствовать, то растение начинает гнить с корней от избытка влажности в почве.

Скелет человека состоит из 210 различных костей, сгруппированных в осевой и дополнительный скелет. Осевой скелет обеспечивает центральную опору тела и включает в себя позвоночник, грудь и череп. Дополнительный скелет

Камбала – это рыба, которая относится к семейству камбаловых. Камбала обитает на дне. Днем она зарывается в песок, чтобы спрятаться от врагов.

Яче́йка па́мяти — минимальный адресуемый элемент запоминающего устройства ЭВМ.

Основные сведения [ править | править код ]

Ячейки памяти могут иметь разную ёмкость (число разрядов, длину). Современные запоминающие устройства обычно имеют размер ячейки памяти равным одной из степеней двойки: 8 бит, 16 бит, 32 бита, 64 бита.

В ранних ЭВМ использовались и более экзотические размерности, например 39 (БЭСМ-1) или 48 (БЭСМ-6). В общем случае длина ячеек памяти может не совпадать с машинным словом, тогда данные записываются в две или четыре соседние ячейки памяти.

Ячейки памяти имеют адрес (порядковый номер, число) по которому к ним могут обращаться команды процессора. Существует несколько различных систем адресации памяти.

Ячейки памяти, построенные на полупроводниковых технологиях, могут быть статическими (SRAM), то есть не требующими регулярного обновления, и динамическими (DRAM), требующими периодической перезаписи для сохранения данных. Как правило, при помощи статических ячеек организуются кэши, при помощи динамических — ОЗУ.

Оперативная память (ОЗУ, RAM), самая известная из всех рассмотренных ранее форм компьютерной памяти. Эту память называют памятью «произвольного доступа» («random access»), поскольку вы можете получить доступ к любой ее ячейке непосредственно. Для этого достаточно знать строку и столбец, на пересечении которых находится нужная ячейка. Известны два основных вида оперативной памяти: динамическая и статическая. Сегодня мы подробно рассмотрим принцип «дырявого ведра», на котором основана динамическая память. Некоторое внимание будет уделено и статической памяти, быстрой, но дорогой.

Ячейка памяти подобна дырявому ведру


Совсем иначе работает память с последовательным доступом (SAM). Как и следует из ее названия, доступ к ячейкам этой памяти осуществляется последовательно. Этим она напоминает пленку в магнитофонной кассете. Когда данные ищутся в такой памяти, проверяется каждая ячейка до тех пор, пока не будет найдена нужная информация. Память этого типа используется для реализации буферов, в частности буфера текстур видеокарт. То есть SAM имеет смысл применять в тех случаях, когда данные будут расположены в том порядке, в котором их предполагается использовать.

Подобно подробно рассмотренному ранее микропроцессору, чип памяти является интегральной микросхемой (ИС, IC), собранной из миллионов транзисторов и конденсаторов. Одним из наиболее распространенных видов памяти произвольного доступа является DRAM (динамическая память произвольного доступа, dynamic random access memory). В ней транзистор и конденсатор спарены и именно они образуют ячейку, содержащую один бит информации. Конденсатор содержит один бит информации, то есть «0» или «1». Транзистор же играет в этой паре роль переключателя (свитча), позволяющего управляющей схеме чипа памяти считывать или менять состояние конденсатора.

Конденсатор можно представить себе в виде небольшого дырявого «ведерка», которое при необходимости заполняется электронами. Если оно заполнено электронами, его состояние равно единице. Если опустошено, то нулю. Проблемой конденсатора является утечка. За считанные миллисекунды (тысячные доли секунды) полный конденсатор становится пустым. А это значит, что или центральный процессор, или контроллер памяти вынужден постоянно подзаряжать каждый из конденсаторов, поддерживая его в наполненном состоянии. Подзарядку следует осуществлять до того, как конденсатор разрядится. С этой целью контроллер памяти осуществляет чтение памяти, а затем вновь записывает в нее данные. Это действие обновления состояния памяти осуществляется автоматически тысячи раз за одну только секунду.

Конденсатор динамической оперативной памяти можно сравнить с протекающим ведром. Если его не заполнять электронами снова и снова, его состояние станет нулевым. Именно эта операция обновления и внесла в название данного вида памяти слово «динамическая». Такая память или обновляется динамически, или «забывает» все, что она «помнила». Есть у этой памяти существенный недостаток: необходимость постоянно обновлять ее требует времени и замедляет работу памяти.

Устройство ячейки динамической оперативной памяти (DRAM)


Структуру памяти можно представить себе в виде трехмерной сетки. Еще проще: в виде листка из школьной тетради в клеточку. Каждая клеточка содержит один бит данных. Сначала определяется столбец, затем данные записываются в определенные строки посредством передачи сигнала по данному столбцу.

Итак, представим себе тетрадный лист. Некоторые клеточки закрашены красным фломастером, а некоторые остались белыми. Красные клеточки это ячейки, состояние которых «1», а белые — «0».

Только вместо листа из тетради в оперативной памяти используется кремниевая пластина, в которую «впечатаны» столбцы (разрядные линии, bitlines) и строки (словарные шины, wordlines). Пересечение столбца и строки является адресом ячейки оперативной памяти.

Динамическая оперативная память передает заряд по определенному столбцу. Этот заряд называют стробом адреса столбца (CAS, Column Adress Strobe) или просто сигналом CAS. Этот сигнал может активировать транзистор любого бита столбца. Управляющий сигнал строки именуется стробом адреса строки (RAS, Row Adress Strobe). Для указания адреса ячейки следует задать оба управляющих сигнала. В процессе записи конденсатор готов принять в себя заряд. В процессе чтения усилитель считывания (sense-amplifier) определяет уровень заряда конденсатора. Если он выше 50 %, бит читается, как «1»; в остальных случаях, как «0».

Осуществляется также обновление заряда ячеек. За порядком обновления следит счетчик. Время, которое требуется на все эти операции, измеряется в наносекундах (миллиардных долях секунды). Если чип памяти 70-наносекундный, это значит, полное чтение и перезарядка всех его ячеек займет 70 наносекунд.

Сами по себе ячейки были бы бесполезны, если бы не существовало способа записать в них информацию и считать ее оттуда. Соответственно, помимо самих ячеек, чип памяти содержит целый набор дополнительных микросхем. Эти микросхемы выполняют следующие функции:

  • Идентификации строк и столбцов (выбор адреса строки и адреса ячейки)
  • Отслеживание порядка обновления (счетчик)
  • Чтение и возобновление сигнала ячейки (усилитель)
  • Донесение до ячейки сведений о том, следует ли ей удерживать заряд или нет (активация записи)

У контроллера памяти есть и другие функции. Он выполняет набор обслуживающих задач, среди которых следует отметить идентификацию типа, скорости и объема памяти, а также проверку ее на ошибки.

Статическая оперативная память


Хотя статическая оперативная память (подобно динамической) является памятью произвольного доступа, она основана на принципиально иной технологии. Триггерная схема этой памяти позволяет удерживать каждый бит сохраненной в ней информации. Триггер каждой ячейки памяти состоит из четырех или шести транзисторов и содержит тончайшие проводки. Эта память никогда не нуждается в обновлении заряда. По этой причине, статическая оперативная память работает существенно быстрее динамической. Но поскольку она содержит больше компонентов, ее ячейка намного крупнее ячейки динамической памяти. В итоге чип статической памяти будет менее емким, чем динамической.

Статическая оперативная память быстрее, но и стоит дороже. По этой причине статическая память используется в кэше центрального процессора, а динамическая в качестве системной оперативной памяти компьютера. Более подробно о статической памяти написано в разделе «Кэш-память и регистр процессора» материала, посвященного преодолению ограничений компьютерной памяти.

В современном мире чипы памяти комплектуются в компонент, именуемый модулем. Порой компьютерные специалисты называют его «планкой памяти». Один модуль или «планка» содержит несколько чипов памяти. Не исключено, что вам приходилось слышать такие определения, как «память 8×32» или «память 4×16». Разумеется, цифры могли быть иными. В этой простой формуле первым множителем является количество чипов в модуле, а вторым емкость каждого модуля. Только не в мегабайтах, а в мегабитах. Это значит, что результат действия умножения следует разделить на восемь, чтобы получить объем модуля в привычных нам мегабайтах.

К примеру: 4×32 означает, что модуль содержит четыре 32-мегабитных чипа. Умножив 4 на 32, получаем 128 мегабит. Поскольку нам известно, что в одном байте восемь бит, нам нужно разделить 128 на 8. В итоге узнаем, что «модуль 4×32» является 16-мегабайтным и устарел еще в конце минувшего века, что не мешает ему быть превосходным простым примером для тех вычислений, которые нам потребовались.

Тема оперативной памяти настолько обширна, что мы вернемся к ней еще. Нам предстоит узнать о том, какие бывают типы оперативной памяти и как устроен ее модуль. Продолжение следует…

В одном бите памяти содержится информации

Информацию можно представлять в нескольких формах:

Кодирование

Одна и та же информация может быть выражена в разных формах. В таких случаях использую специальные обозначения, называемые кодом.

 | Код — набор символов (условных обозначений) для представления информации.

QR-код и код программы, написанный на языке Python
 | Кодирование — процесс представления информации в виде кода.
Алфавит азбуки Морзе

Измерение количества информации

Память в компьютере разделена на равные части. Одна такая часть называются наименьшей адресуемой ячейкой памяти компьютера. В свою очередь, данная ячейка разделена на 8 разрядов. Один разряд может принимать одно из двух значений: 0 или 1.

И нуль и единица занимают одинаковое количество информации и измеряются в битах.

Такую ячейку ещё называют однобайтовой, так как совокупность из 8 бит образует 1 байт. Каждая следующая единица измерения больше предыдущей на 1024 (210).

Единицы измерения объема информации

Переводы из одной единицы измерения в другую

Для перевода из меньшей величину в большую, необходимо последовательно делить исходное значение на разницу между промежуточными единицами измерения.

Дано 8192 бита. Перевести данное число в килобайты.

1) 8192 бит : 8 = 1024 байт;

2) 1024 байт : 1024 = 1 Кбайт;

Для перевода из большей величину в меньшую, необходимо последовательно умножать исходное значение на разницу между промежуточными единицами измерения.

Дано 2 гигабайта. Перевести данное число в Кбайты.

1) 2 Гбайта * 1024 = 2048 Мбайт;

2) 2048 Мбайт * 1024 = 2 097 152 Кбайт;

Ответ: 2 097 152 Кбайт.

Знаковая система. Язык и алфавит.

В независимости от формы представления информации, она всегда представляется с помощью какого-либо языка.

 | Язык — это сложная знаковая система, созданная естественно или искусственно.

 | Знаковая система — это совокупность знаков алфавита и правил работы с ними.

 | Алфавит — это набор знаков (символов), из которых формируются сообщения.

Все языки можно разделить на группы:

» естественные – сформировались в процессе развития человечества (устный и письменный).

» формальные – созданы специально для определённых целей (язык математики, физики, химии и т.д.).

Количество всех символов латинского языка, является мощностью этого алфавита (N).

N – мощность алфавита;

i – вес одного символа.

Алфавитный подход к измерению информации

Согласно данному подходу, любой набор знаков некоторого алфавита называют сообщением.

Фраза «Я изучаю информатику» состоит из набора символов русского алфавита, следовательно, данное высказывание является сообщением.

Для того, чтобы найти информационный объём сообщения, необходимо умножить количество символов этого сообщения на вес одного символа алфавита, которым оно записано.

I – информационный объём сообщения;

K – количество символов в сообщении;

i – вес одного символа.

Очевидно, что формулы N=2i и I=K*i взаимовыражаемы.

Литература:
1. Информатика: учебник для 7 класса / Л.Л. Босова, А.Ю. Босова. — М.: БИНОМ.Лаборатория знаний, 2014. — 224 с.
2. Информатика. 7 класса / К.Ю. Поляков, Е.А. Еремин. — М.: БИНОМ.Лаборатория знаний, 2017. — 228 с.

К уроку:

ПРЕЗЕНТАЦИЯ

Единицы измерения информации

1. Выполните перевод в биты:

а) 8 байт  г) 32 Кбайта  ж) 0,1 Гбайта
б) 12 байт  д) 1 Мбайт  з) 0,25 Гбайта
в) 20 Кбайт  е) 0,3 Мбайта  и) 0,01 Пбайта

2. Выполните перевод в байты:

а) 16 бит  г) 11 Кбайт  ж) 1 Гбайт
б) 20 бит  д) 1,5 Мбайт  з) 0,6 Гбайта
в) 0,5 Кбайт  е) 0,2 Мбайта  и) 0,02 Пбайта

3. Выполните перевод в килобайты:

а) 4096 бит  г) 204800 байт  ж) 2 Гбайта
б) 368640 бит  д) 3 Мбайта  з) 3,5 Гбайта
в) 12288 байт  е) 2,5 Мбайта  и) 0,03 Пбайта

4. Установите соответствие:

5. Заполните таблицу, определив недостающие величины (ответ округлить до сотых):

Алфавитный подход к измерению информации

6. В алфавите некоторой страны всего 16 символов. Найдите вес одного символа этого алфавита.

7. Алфавит русской азбуки Морзе состоит из 32 символов. Определите вес каждого символа русской «Морзянки».

8. После объединения северного и южного племени было решено объединить их алфавиты. Алфавит северян содержал 23 символа. Южане использовали в своём алфавите 41 символ. Подсчитайте вес одного символа нового алфавита, объединяющего символы северян и южан.

9. Двое друзей решила придумать свой собственный тайный язык. На листе бумаги они выписали все символы алфавита этого языка. В конечном итоге ребята придумали 128 символов. Определите вес одного символа в этом алфавите.

10. Один символ некоторого алфавита занимает 6 бит информации. Определите из скольких символов состоит этот алфавит?

11. Пользователь напечатал текст каждая буква которого весит около 5 бит. Подсчитайте количество символов в используемом алфавите.

12. В памяти телефона на хранение одного смайлика отводится 1,5 байта информации. Определите количество неодинаковых смайликов, которое можно поместить в библиотеку данного телефона.

13. Научный сотрудник лингвистического университета работает с текстом, написанном на неизвестном языке. Он подсчитал, что этот текст содержит 4080 знаков. Проанализировав данный текст и выписав все уникальные знаки, он определил, что количество символов в алфавите этого языка составляет 64 символа. Найдите объём этого текста.

14. Пользователь набрал сообщение содержащие 128 символов. Определите объём этого сообщения, если известно, что алфавит с помощью которого было набрано это сообщение состоит из 32 символов.

15. Известно, что в книге, состоящей из 126 страниц на каждой странице содержится 50 строк, а в каждой строке 74 символа. Определите информационный объём книги, если вес одного символа равен 6 бит. Ответ запишите в байтах.

16. Сообщение записано на языке в алфавит которого входит 256 символов. Найдите количество символов этого сообщения, если известно, что его информационный объем равен 964 байта.

17. Ваня обнаружил, что на прошлой неделе написал 2 электронных сообщения своему другу по переписке. Вес первого сообщения составил 900 бит, а второго на 5 байт больше. На сколько символов одно сообщение больше другого, если оба этих сообщения были набраны с использованием алфавита, состоящего из 32 символов.

В одном бите памяти содержится информации

2. Единицы измерения данных

Объем данных (V) – количество байт, которое требуется для их хранения в памяти электронного носителя информации.

Память носителей в свою очередь имеет ограниченную ёмкость, т.е. способность вместить в себе определенный объем.

· Бит — базовая единица измерения количества информации , равная количеству информации, содержащемуся в опыте, имеющем два равновероятных исхода. Это тождественно количеству информации в ответе на вопрос, допускающий ответы «да» либо «нет» и никакого другого (то есть такое количество информации, которое позволяет однозначно ответить на поставленный вопрос). Один разряд двоичного кода (двоичная цифра). Может принимать только два взаимоисключающих значения: да/нет, 1/0, включено /выключено, и т. п. В электронике 1 двоичному разряду соответствует 1 двоичный триггер, который имеет два устойчивых состояния.

· Байт (англ. byte ) — единица хранения и обработки цифровой информации. В настольных вычислительных системах байт считается равным восьми битам, в этом случае он может принимать одно из 256 (2 8 ) различных значений. Следует понимать, что количество бит в байте не является однозначной величиной и может варьироваться в широком диапазоне. Так, в первых компьютерах размер байта был равен 6 битам. В суперкомпьютерах, вследствие используемой адресации, один байт содержит 32 бита. Для того , чтобы подчеркнуть, что имеется в виду восьмибитный байт, а также во избежание широко распростанённого заблуждения, что в одном байте исключительно восемь бит, в описании сетевых протоколов используется термин «октет» (лат. octet ). Байт в современных x86-совместимых компьютерах — это минимально адресуемый набор фиксированного числа битов.

· Килоба́йт ( кБ , Кбайт, КБ) м., скл . — единица измерения количества информации, равная в зависимости от контекста 1000 или 1024 (2 10 ) стандартным (8-битным) байтам. Применяется для указания объёма памяти в различных электронных устройствах.

1 килобайт (КБ) = 8 килобит (Кб)

Название «килобайт» часто применяется для 1024 байт, но формально неверно, так как приставка кил о- , традиционно означает умножение на 1000, а не 1024. Согласно предложению МЭК, формально правильной (хотя и относительно редко используемой) для 2 10 является двоичная приставка киби .

Исторически сложилось, что со словом «байт» несколько некорректно (вместо 1000 = 10 3 принято 1024 = 2 10 ) использовали и продолжают использовать приставки СИ: 1 Кбайт = 1024 байт, 1 Мбайт = 1024 Кбайт, 1 Гбайт = 1024 Мбайт и т. д. При этом обозначение Кбайт начинают с прописной буквы в отличие от строчной буквы «к» для обозначения множителя 10 3 .

· Мегаба́йт (Мбайт, М, МБ) м., скл . — единица измерения количества информации, равная, в зависимости от контекста, 1 000 000 (10 6 ) или 1 048 576 (2 20 ) стандартным (8-битным) байтам. Сокращенное название МБ отличается от Мегабита (Мб) строчной буквой (но на самом деле иногда происходит некоторая путаница в сокращениях). Применяется для указания объёма памяти в различных электронных устройствах.

· Гигабайт (Гбайт, Г, ГБ) — кратная единица измерения количества информации, равная 10 9 стандартным (8-битным) байтам или 1 000 000 000 байтам. Применяется для указания объёма памяти в различных электронных устройствах. От сложившегося положения нередко страдают потребители продукции крупных корпораций, производящих жёсткие диски и карты флэш-памяти . Приобретая изделие, в маркировке которого указана его реальная емкость, например, 1 гигабайт или 1 000 000 000 байт они полагают, что приобретают изделие емкостью 1 гибибайт или 1 073 741 824 байт, что нередко приводит к непониманию и недовольству.

Бай т- мельчайшая адресуемая единица информации

Килобайт – базовая единица

Машинное слово — машиннозависимая и платформозависимая величина, измеряемая в битах или байтах , равная разрядности регистров процессора и/или разрядности шины данных . На ранних компьютерах размер слова совпадал также с минимальным размером адресуемой информации (разрядностью данных, расположенных по одному адресу); на современных компьютерах минимальным адресуемым блоком информации обычно является байт, а слово состоит из нескольких байтов. Машинное слово определяет следующие характеристики аппаратной платформы :

· разрядность данных , обрабатываемых процессором;

· разрядность адресуемых данных (разрядность шины данных);

· максимальное значение беззнакового целого типа , напрямую поддерживаемого процессором: если результат арифметической операции превосходит это значение, то происходит переполнение ;

· максимальный объём оперативной памяти , напрямую адресуемой процессором.

Кластер — в некоторых типах файловых систем логическая единица хранения данных в таблице размещения файлов, объединяющая группу секторов. Как правило, это наименьшее место на диске, которое может быть выделено для хранения файла.

Се́ктор диска — минимальная адресуемая единица хранения информации на дисковых запоминающих устройствах. Является частью дорожки диска. У большинства устройств размер сектора составляет 512 байт, либо 2048 байт (например, у оптических дисков).

Для более эффективного использования места на диске файловая система может объединять секторы в кластеры, размером от 512 байт (один сектор) до 64 кбайт (128 секторов). Переход к кластерам произошел потому, что размер таблицы FAT был ограничен, а размер диска увеличивался. Количество секторов на цилиндрах ранее было одинаковым, на современных дисках количество секторов на цилиндр разное, но контроллер жёсткого диска сообщает о некоем условном количестве дорожек, секторов и сторон, хотя позднее была создана система обращения к дискам, в которой все секторы пронумерованы. Первый сектор диска обычно является загрузочным.

голоса
Рейтинг статьи
Читайте так же:
Веб интерфейс модема huawei
Ссылка на основную публикацию
Adblock
detector