Parus16.ru

Парус №16
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Наука и жизнь в России

Наука и жизнь в России

Регулируемый блок питания из блока питания персонального компьютера

Первоначально эту тему я нашел на сайте http://gzip.ru в 2011 году. И немного переделав конструкцию, изготовил себе похожий блок питания. Здесь я расскажу обо всех нюансах, с которыми столкнулся.

IMG00658

Блок питания, который у меня получился имеет следующие параметры:

  • Напряжение — регулируемое, от 0 до 24В
  • Ток — регулируемый, от 0 до 25А

Запчасти, купленные дополнительно: амперметр, вольтметр, переменный потенциометр на 10Ком и 4.7Ком, транзисторы BUV48 2штуки вместо штатных, диодная сборка на 100В 80А, стабилизатор LM7812. Транзисторы можно не менять, если выходную мощность оставить на уровне того блока питания,которая написана на корпусе. Выходные провода достаточно взять сечением 2.5 квадрата, они рассчитаны на ток 25 ампер. Радиаторы после 10 минут работы с максимальным напряжением и током, к сожалению перегревались и приходилось выключать блок. Это связано с тем, что радиаторы я не менял, а их размеры ограничены размерами корпуса.

Итак, у Вас есть ненужный блок питания от компьютера ATX, и Вы хотите превратить его в блок питания с регулировкой по напряжению, и току. Для переделки необходим любой блок питания ATX, собранный на ШИМ-контроллере TL494 или его аналоге KA7500.

Схемы большинства блоков питания похожи, и даже, если Вы не смогли найти схему конкретно Вашего — ничего страшного. Первостепенная задача — выпаять из платы вторичные цепи после силового трансформатора, а также цепи, управляющие работой микросхемы TL494. На схеме ниже эти участки подсвечены красным. Перед выпаиванием пометьте выводы вторичной обмотки силового трансформатора по шине 12 вольт. Они нам и понадобятся.

Теперь необходимо собрать новые выходные цепи и цепи регулировки тока и напряжения. К помеченным ранее обмоткам трансформатора шины 12 вольт необходимо припаять сборку двух диодов Шоттки с общим катодом. Здесь нужны высокочастотные диоды, либо диодная сборка, на напряжение не менее 60V. Сборку взять с шины +5В у меня не получилось — она взорвалась — дело в том, что напряжение в импульсе, получаемое с трансформатора по нарисованной ниже схеме составляет немногим меньше 60В, Сборка на +12В не давала нужного тока, в результате купил более мощную на 100В 80А.

Затем необходимо намотать дроссель. Я оставил штатный, который был в блоке. Лишь соединил неиспользуемые 5-ти вольтовые концы в параллель к 12-ти вольтовым. Шунт, нарисованный на схеме ниже Rш не трогайте. Тот, что впаян на плате идеально рассчитан и под эту схему. Он выглядит как простые перемычки со стороны монтажа, а снизу как дорожки. Кстати, с этого же шунта Вы будете снимать милливольты для амперметра.

После этого можно приступать к сборке той части схемы, которая отвечает за регулировки. Авторство этого метода принадлежит пользователю DWD, ссылка на тему с обсуждением: http://pro-radio.ru/power/849/

Регулировка работает очень просто. Рассмотрим цепь регулировки напряжения. На вход компаратора (вывод 1) микросхемы TL494 подключен делитель напряжения на двух резисторах. Напряжение на их средней точке должно быть равно приблизительно 4.95 вольтам. Если Вы хотите изменить верхний предел регулировки напряжения блока питания, необходимо пересчитать именно этот делитель. Второй вход компаратора (вывод 2) подключен к средней точке переменного резистора, таким образом здесь также получается делитель напряжения. Если напряжение на выводе 1 компаратора будет меньше напряжения на выводе 2, то микросхема будет увеличивать ширину импульсов, пока напряжения не уравняются. Таким образом и осуществляется регулировка выходного напряжения блока питания.

Регулировка тока работает аналогично, только здесь для контроля протекающего в нагрузке тока используется падение напряжения на шунте Rш. Его сопротивление 0.01-0.05 Ом. Верхний предел регулировки задаётся подстроечным резистором сопротивлением 1кОм. Думаю с настройкой максимального тока ни у кого не возникнет проблем, , если что оставляйте комментарии.

Нюанс: когда я собрал блок, и другие люди собирали данный блок, у нас он пикал и ШИМ не запускался — все допускали одну ошибку — вывод 4 DTC у TL494 мы отсоединяли не полностью от старой схемы, и старая схема давала сигнал на лапу 4 и блокировала запуск ШИМ. На этой лапе для работы должно быть приблизительно 0 вольт. Если мультиметр между общим проводом и 4-ой лапой покажет больше вольт, значит Вы что-то не отключили. В этой схеме защита по DTC не реализована. После переделки схемы все заработало сразу и прошло уже три года — ни один из трех собранных мной блоков ни разу не сбойнул, единственно что блоки для переделки я брал новые.

Стабилизатор на 12 вольт необходимо прикрутить к дну блока и запитать от дежурного напряжения с 12-ой лапы TL494. От этого стабилизатора идет питание на вентилятор блока, вольтметр и амперметр.

Когда соберете схему выше, прежде чем подавать на нее питание 220 вольт, подключите галогенную лампу 220 вольт на 500Вт или 1000 Вт (завит от мощности блока) последовательно в цепь питания. Дело в том, что если у Вас что-то не так будет собрано, или где-то есть замыкание, лампа предотвратит взрыв транзисторов и сбережет ваши нервы и деньги. Лампа продается в магазине электрики. Лично я эту лампу оставил прямо в корпусе блока питания в качестве защиты — она компактная и если когда-нибудь ШИМ микросхема в нем выйдет из строя, лампа просто загорится светом и вы выключите блок в течении минуты. Если в течении минуты Вы этого не сможете выключить, ее надо вынести за пределы блока, дабы не расплавить ее светом детали блока. Надеюсь, эта статья написана не зря.

Читайте так же:
Звуковая карта line 6 ux2

9 комментариев

  • 31 Июл 2016 в 06:33 Дмитрий пишет:

Схема кривая. Если верить ей, то в случае сработки защиты и отсутствии массы на pson должны выгореть tl494-q7-d22-q3

Дроссели

Электрический дроссель — устройство, представляющее собой катушку индуктивности и предназначенное для ограничения переменной составляющей электрического тока. Другими словами, если ток в электрической цепи содержит постоянную и переменную составляющие то дроссель, последовательно включенный в эту электрическую цепь, за счёт своей индуктивности и большого сопротивления для переменного тока, значительно его снижает, а на постоянную составляющую тока, влияет минимально, за счёт низкого сопротивления постоянному току.

Типовая схема включения низкочастотного дросселя в фильтр анодного питания

Рис. 1 Типовая схема включения низкочастотного дросселя в фильтр анодного питания

Дроссели позволяют запасать электрическую энергию в магнитном поле. Типичное их применение — сглаживающие фильтры и различные селективные цепи. Их электрические характеристики определяются конструкцией, свойствами материала магнитопровода, его конфигурацией и числом витков катушки.
При выборе дросселя следует учитывать следующие характеристики:

  • требуемое значение индуктивности (Гн, мГн, мкГн, нГн);
  • максимальный ток катушки;
  • допуск (величину отклонения от исходного значения) индуктивности;
  • температурный коэффициент индуктивности (ТКИ);
  • активное сопротивление провода катушки дросселя;
  • добротность дросселя, которая определяется на рабочей частоте как отношение индуктивного и активного сопротивлений;
  • частотный диапазон катушки.

В зависимости от диапазона частот технически различаются высокочастотные и низкочастотные дроссели

Высокочастотные дроссели подразделяются на два типа:

  • с постоянным значением индуктивности;
  • с переменным значением индуктивности, за счет подстраиваемого ферромагнитного сердечника.

Первый тип применяется, как правило, во входных цепях телефонных аппаратов, в сглаживающих фильтрах, в цепях питания ВЧ аппаратуры. Второй тип катушек используется в резонансных цепях – ВЧ, трактах приемных и передающих устройств.

В ламповых усилителях звуковой частоты высокочастотные дроссели, применяются крайне редко. Как правило их использование может быть предопределено схемотехникой выходных каскадов, построенных на высокочастотных пентодах большой мощности, предрасположенных к самовозбуждению на радиочастотах.

Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек. Конструкции дросселей высокой частоты показаны на рис. 2. Для дросселей длинных (а, б) и средних (б, в) волн применяется секционированная многослойная намотка. Дроссели для коротких (г) волн и для метровых (д) волн обычно имеют однослойную намотку — сплошную или с принудительным шагом. В качестве каркаса часто используются керамические стержни от сопротивлений ВС-0,5 и ВС-1,0.

Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек

Рис. 2 Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек

Высокочастотный дроссель можно изготовить самостоятельно, намотав необходимое количество витков, для получения нужной индуктивности на керамический или фторопластовый сердечник. Рассчитать необходимое количество витков можно по формулам, приведенным в разделе Индуктивности. Катушки с малой индуктивностью.

Лучше использовать, выпускаемые промышленностью ВЧ дроссели. Они имеют понятную яркую цветовую маркировку и отличаются высокой добротностью.

Цветовая маркировка высокочастотных дросселей

Рис. 2 Цветовая маркировка высокочастотных дросселей

Низкочастотные дроссели — предназначены для подавления низкочастотной составляющей переменного тока питающей сети и его гармоник. На рисунке 3, представлен низкочастотный дроссель, индуктивностью 3 Гн при токе подмагничивания 120 ma.

Рис. 3 Низкочастотный дроссель промышленного производства

Дроссели лучше, и проще всего использовать заводские, предпочтительнее от старых ламповых телевизоров Темп-6, Темп-6М, Темп-7, Рубин-102, Авангард, Беларусь, или других аналогичных по характеристикам старых телевизоров. Но если стоит задача изготовить ламповый усилитель высокого качества и надёжности своими руками, то дроссель придётся рассчитать, по приведенной ниже методике, и изготовить его самостоятельно. Принципиально новым подходом в современной ламповой схемотехнике, может оказаться требование обязательной настройки дросселей фильтра питания в резонанс на частоту 100 Гц. Это необходимо для повышения эффективности фильтрации выпрямленного напряжения.

Расчет низкочастотного дросселя для анодного источника питания

Дроссель — это важный элемент блока питания лампового усилителя. Совместно с электролитическими конденсаторами, он входит в состав П – образного низкочастотного фильтра и становится незаменимым элементом в цепи анодного питания усилителя класса Hi-End. В зависимости от мощностных характеристик усилителя и его качественных показателей, размеры дросселя могут сильно варьировать и доходить до половины размеров силового трансформатора.

Некоторые параметры, встречающиеся в расчетных формулах:
F — частота, Гц;
Sc — площадь сечения сердечника, кв. см;
Кс — коэффициент заполнения сердечника сталью;
Sok — площадь сечения окна, кв. см;
Кок — коэффициент заполнения окна медью;
Вт — максимальная индукция в сердечнике, Тл;
J — плотность тока в проводах, А/кв. мм.
I — постоянный ток в проводе обмотки дросселя, А.

Читайте так же:
Впн для китая на компьютер

Главный параметр дросселя — его постоянная времени, отношение индуктивности к сопротивлению обмотки L/R. Чем выше требуется эта величина, тем больше должны быть габариты магнитопровода, чтобы провод нужного диаметра и длины поместился в окне сердечника.

Индуктивность дросселя рассчитывается по уже известной формуле:

Индуктивность дросселя

При неизменной степени постоянного подмагничивания индук­тивность получается максимальной при определенной длине немаг­нитного зазора lz. От величины этого зазора зависит эквивалентная магнитная проницаемость сердечника:

От величины немагнитного зазора зависит эквивалентная магнитная проницаемость сердечника

В присутствии постоянного подмагничивания lz уже не является независимой переменной. Ключевой величиной в расчете дросселей и трансформаторов является степень подмагничивания или количество погонных ампервитков (aw0).

Количество погонных ампер - витков

Формула связи напряженности магнитного поля с инженерной величиной aw0, приведена ниже:

Формула связи напряженности магнитного поля с инженерной величиной aw0

Предлагаемый алгоритм расчета основан на экспериментальном графике зависимости магнитной проницаемости от aw0 рисунок 4.

Экспериментальный график зависимости начальной магнитной проницаемости от степени подмагничивания

Рис. 4 Экспериментальный график зависимости начальной магнитной проницаемости от aw0

Эти графики соответствуют массовым маркам сталей. Высококачественная сталь имеет в несколько раз большую магнитную проницаемость, однако в большинстве случаев рассчитывать на это не приходится. На графике показана зависимость начальной (т. е. в Отсутствие переменного магнитного поля) магнитной проницаемости от напряженности магнитного поля, выраженного в ампервитках на сантиметр. В системе СИ напряженность измеряется в амперах на метр. Следует помнить, что точки на графике соответствуют разным зазорам. Более высокие напряженности требуют большего зазора. В начале расчета величины aw0 и, соответственно, μ z не известны. Количество витков в обмотках может быть получено методом последовательных приближений по формуле:

Количество витков в обмотке дросселя

Для этого в формулу подставляются параметры трансформатора, требуемая индуктивность и пробная величина μ проб, по полученному количеству витков вычисляется степень подмагничивания aw0. По графику μ (aw0) находится μ z, вместо графиков при машинных расчетах можно использовать аппроксимирующие уравнения:

Для горячекатанной стали

Аппроксимирующее уравнение для определения действующей магнитной проницаемости для горячекатанной стали

Для холоднокатанной стали

Аппроксимирующее уравнение для определения действующей магнитной проницаемости для холоднокатанной стали

Пробная μ проб корректируется и снова просчитывается количество витков. Эта процедура проделывается несколько раз до тех пор, пока изменение количества витков от просчета к просчету не будет незначительным (несколько процентов). В большинстве случаев достаточно двух-трех проходов. Если новое значение больше старой μ проб, то μ проб следует увеличить так, чтобы она стала немного больше μ z и наоборот. В конце расчета необходимо убедиться, что получившиеся L, N удовлетворяют требованию конструктивной реализуемости. Для этого вычисляется максимальное сечение провода S, которое можно разместить в окне:

Максимальное сечение медного провода, которое можно разместить в окне стального магнитопровода

Плотность тока в медном проводнике обмотки дросселя, рассчитывается по формуле:

Плотность тока в медном проводнике обмотки дросселя

Если плотность тока J не превышает обычных 1,5—2 А/кв. мм, то расчет можно считать оконченным, так как не требуется точного соответствия сопротивления оболочки заданному. Количество витков не должно превышать 3500—4000. При необходимости следует выбрать другой типоразмер магнитопровода и повторить расчет. При сборке намотанного дросселя необходимо уложить в зазор немагнитную прокладку нужной толщины. Точное соблюдение и подбор величины зазора необходимо только для выходных трансформаторов. Для дросселей вполне достаточно точности эмпирической формулы, приведенной ниже. Величина зазора рассчитывается в мм:

Эмпирическоая формула для приблизительного рассчета толщины немагнитного зазора в миллиметрах

Намотка катушек дросселей не имеет особенностей. В большинстве случаев (для дросселей блоков питания) нет необходимости даже в межслоевой изоляции. Обмотка обычно находится под высоким потенциалом, поэтому она должна быть хорошо изолирована от сердечника. Пропитка дросселей, как правило, необходима, чтобы избежать гудения. Результаты расчета дросселя на очень распространенном и дешевом сердечнике от выходного трансформатора лампового телевизора Ш 16×25 с размером окна 16 х 40 мм, приведены в таблице №1:

Ремонт блока питания самоcтоятельно

Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.
Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.
Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Какой инструмент понадобится:

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отвертка.
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр.
Пинцет.
Лампочка на 100Вт.
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.

Устройство БП.

Что мы увидим, вскрыв блок питания.

Читайте так же:
Блок питания на компьютер 400w

Как отремонтировать компьютерный блок питания своими силами

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.
Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Как отремонтировать компьютерный блок питания своими силами

Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.
Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.
Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

БП не запускается, отсутствует напряжение дежурного питания;
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG;
БП уходит в защиту;
БП работает, но воняет;
Завышены или занижены выходные напряжения.

Предохранитель.

Как отремонтировать компьютерный блок питания своими силами

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Термистор.

Как отремонтировать компьютерный блок питания своими силами

Задачей термистора является снижение броска тока при включении. При возникновении высоковольтного импульса сопротивление термистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети термистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Термистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же термисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя термистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с термистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены термистора и проверки остальных элементов первичной цепи.

Диодный мост.

Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

Как отремонтировать компьютерный блок питания своими силами

Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

Как отремонтировать компьютерный блок питания своими силами

Конденсаторы.

Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Как отремонтировать компьютерный блок питания своими силами

Резисторы.

Как отремонтировать компьютерный блок питания своими силами

Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые практически не возможно достать принципиальных схем. Ниже представлена таблица цветовой маркировки резисторов:

Читайте так же:
Диоды шоттки в блоках питания компьютера

Как отремонтировать компьютерный блок питания своими силами

Диоды и стабилитроны.

Как отремонтировать компьютерный блок питания своими силами

Проверяются методом прозвона в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки.

Как отремонтировать компьютерный блок питания своими силами

Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в “позвонке” р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Проверка диодного моста: Если он выполнен в виде отдельной сборки, его нужно просто аккуратно выпаять и протестировать уже разделенную цепь на печатной плате. В том случае, если выпрямитель выполнен из отдельных диодов, вполне возможно проверить его, не выпаивая их все из платы. Достаточно прозвонить каждый из них на короткое замыкание в обоих направлениях, и выпаивать только подозреваемые в неисправности. Исправный диод должен иметь сопротивление в прямом направлении около 600 Ом и в обратном — порядка 1.3 МОм.

Как отремонтировать компьютерный блок питания своими силами

Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно, т.к. они затрудняют доступ к другим элементам.

ШИМ.

Как отремонтировать компьютерный блок питания своими силами

Если ШИМ визуально не поврежден и не греется, то без осциллографа его проверить довольно сложно.
Простым способом проверки ШИМ, является проверка контрольных контактов и контактов питания на пробой.
Для этого нам понадобиться мультиметр и дата шит на микросхему ШИМ. Диагностику ШИМ следует проводить, предварительно выпаяв её. Проверка производится прозвоном следующих контактов относительно земли (GND): V3.3, V5, V12, VCC, OPP. Если между одним из этих контактов и землей сопротивление крайне мало, до десятков Ом, то ШИМ под замену.

Способ проверки внутреннего стабилизатора: Суть способа заключается в проверке внутреннего стабилизатора микросхемы. Этот метод годится для модели tl494 и ее полных аналогов. При отключенном от сети блоке питания нужно подать на 12-ю ножку микросхемы постоянное напряжение от +9 до +12 вольт, при этом подсоединив «минус» к 7-ой ножке, после чего необходимо замерить напряжение на 14-й ножке — оно должно быть равно 5 вольтам. Если напряжение сильно отклонено (±0.5 В), это свидетельствует о неисправности внутреннего стабилизатора микросхемы. Данный элемент лучше купить новый.

По поводу ремонта дежурного питания что-либо конкретное посоветовать трудно — может сгореть все, что угодно, но это компенсируется довольно простым устройством данной части. Будет вполне достаточно полазить по форумам по данной тематике, чтобы найти причину неисправности и метод ее устранения.

Дежурное питание и POWER GOOD.

Теперь рассмотрим другую ситуацию: предохранитель не сгорает, все элементы, упомянутые выше, исправны, но устройство не запускается.

Немного отойдем от темы и вспомним, как работает блок питания стандарта АТХ. В ждущем режиме (именно в нем находится «выключенный» компьютер) БП все равно работает. Он обеспечивает дежурное питание для материнской платы, чтобы ты мог включить или отключить компьютер кнопкой, по таймеру, или при помощи какого-либо устройства. «Дежурка» представляет собой 5 вольт, которые постоянно (пока компьютер включен в электрическую сеть) подаются на материнскую плату. Когда ты включаешь компьютер, материнская плата формирует сигнал PS_ON и запускает блок питания. В процессе запуска системы проходит проверка всех питающих напряжений и формируется сигнал POWER GOOD. В том случае, если по каким-либо причинам напряжение сильно завышено или занижено, этот сигнал не формируется, и система не стартует. Впрочем, как уже упомяналось выше, во многих NONAME блоках питания защита отсутствует напрочь, что пагубно сказывается на всем компьютере.

Итак, первым делом нужно проверить наличие 5 вольт на контактах +5VSB и PS_ON. Если на какомто из этих контактов напряжения нет или оно сильно отличается от номинала, это указывает на неисправности либо в цепи вспомогательного преобразователя (если нет +5 vsb), либо на неисправность ШИМ контроллера или его обвязки (неработоспособность PS_ON).

Дроссель групповой стабилизации (ДГС).

Выходит из строя из-за перегрева (при остановке вентилятора) или из-за просчетов в конструкции самого БП (пример Microlab 420W). Сгоревший ДГС легко определить по потемневшему, шелушащемуся, обугленному изоляционному лаку. Сгоревший ДГС можно заменить на аналогичный или смотать новый. Если вы решите смотать новый ДГС, то следует использовать новое ферритовое кольцо, т.к. из за перегрева старое кольцо могло уйти по параметрам.

Как отремонтировать компьютерный блок питания своими силами

Трансформаторы.

Для проверки трансформаторов их следует предварительно выпаять. Их проверяют на короткозамкнутые витки, обрыв обмоток, потерю или изменение магнитных свойств сердечника.

Чтобы проверить трансформатор на предмет обрыва обмоток достаточно простого мультиметра, остальные неисправности трансформаторов определить гораздо сложнее и рассматривать их мы не будем. Иногда пробитый трансформатор можно определить визуально.

Читайте так же:
Блок питания дельта схема

Как отремонтировать компьютерный блок питания своими силами

Опыт показывает, что трансформаторы выходят из строя крайне редко, поэтому их нужно проверять в последнюю очередь.

Профилактика вентилятора.

Как отремонтировать компьютерный блок питания своими силами

После удачного ремонта следует произвести профилактику вентилятора. Для этого вентилятор надо снять, разобрать, почистить и смазать.

Отремонтированный блок питания следует длительное время проверить под нагрузкой.
Прочитав эту статью, вы самостоятельно сможете произвести легкий ремонт блока питания, тем самым сэкономив пару монет и избавить себя от похода в сервис или магазин.

Назначение сетевых и моторных дросселей

В данной статье мы рассмотрим сетевые и моторные дроссели — фильтры низких частот, которые устанавливаются на входе и выходе частотных преобразователей. Простейшая схема подключения ПЧ выглядит следующим образом: три фазы на входе, три фазы на выходе, электродвигатель.

Cхема подключения частотного преобразователя

Однако здесь возникает одна проблема. Дело в том, что частотный преобразователь является генератором широкого спектра помех, которые могут оказывать значительное влияние на работу устройств, находящихся неподалеку или питающихся от одной сети. С другой стороны, ПЧ сам реагирует на помехи различного рода, поскольку в его состав входят слаботочные компоненты. Поэтому при применении преобразователя очень важным является вопрос электромагнитной совместимости.

Условно помехи можно разбить на два основных вида:

  1. помехи, передающиеся по электромагнитному полю
  2. помехи, передающиеся по питающим проводам

В первом случае наводки можно уменьшить, проведя качественное экранирование и заземление преобразователя частоты, его проводов и периферийных устройств. Высокочастотные помехи, распространяющиеся по проводам, значительно снижаются с помощью радиочастотных фильтров.

Назначение входного сетевого дросселя

Сетевой дроссель, который также называют входным реактором, подключается на входе питания частотного преобразователя (обычно это силовые клеммы R, S, T). Основными параметрами сетевого дросселя являются индуктивность и максимальный длительный ток. Индуктивность выбирается такой, чтобы при рабочей частоте и номинальном рабочем токе падение напряжения на дросселе составляло 3-5%. Рассчитать падение можно по формуле:

U=2πfLI, где f – рабочая частота (Гц), L – индуктивность дросселя (Гн), I – ток, А.

Рассмотрим основные плюсы применения сетевого дросселя.

1. Подавление высших гармоник, проникающих в питающую сеть от преобразователя частоты и обратно. Обычно в состав ПЧ входит радиочастотный фильтр, снижающий данные наводки. Подключение сетевого дросселя создает дополнительное подавление высокочастотных помех. В результате уровень высших гармоник питающего напряжения в значительной степени уменьшается, а действующее значение питающего тока стремится к величине тока основной гармоники (50 Гц).

2. В случае, когда источник питания расположен близко, и сопротивление питающей линии очень низкое, использование сетевого дросселя позволяет значительно уменьшить ток короткого замыкания и увеличить время его нарастания. Это позволяет защитить ПЧ при коротких замыканиях на выходе.

3. Если на одной шине питания расположены несколько мощных устройств, возможны ситуации, когда при их включении или выключении возникает скачок напряжения с большой скоростью нарастания. Сетевой дроссель значительно понижает этот эффект.

При выборе оборудования следует учитывать один нюанс. Чтобы избежать перегрева дросселя, его номинальный ток должен быть равен или больше максимального тока преобразователя.

Когда сетевой дроссель не нужен

Оснащение преобразователей частоты сетевыми дросселями лучше взять за правило. Многие компании увеличивают гарантию в 2 раза при покупке ПЧ в комплекте с дроселями. Однако в некоторых случаях данным оборудованием можно пренебречь:

  1. В питающей сети нет мощных электроприборов, имеющих большие пусковые токи.
  2. Питающая сеть имеет сравнительно высокое сопротивление (низкий ток короткого замыкания).
  3. Режим работы ПЧ исключает резкие изменения мощности, при которых скачкообразно растет потребляемый ток.
  4. В соответствии с рекомендациями производителя, для защиты ПЧ применяются полупроводниковые предохранители, либо защитные автоматы характеристики В.
  5. Имеется большой запас по мощности ПЧ по отношению к используемому двигателю.

Тем не менее, в целом использование сетевых дросселей значительно повышает срок службы и надежность работы частотных преобразователей.

Использование моторного дросселя

Моторный дроссель включается в цепи питания электродвигателя. Другие его названия – выходной реактор или синусоидальный фильтр.

Необходимость применения моторного дросселя обусловлена принципом работы ПЧ. На выходе преобразователя стоят силовые транзисторы, которые работают в ключевом режиме. При этом образуются прямоугольные импульсы, приближающие действующее напряжение по форме к синусоиде за счет изменения длительности. Моторный дроссель снижает высшие гармоники выходного напряжения ПЧ и делает ток питания двигателя практически синусоидальным, минимизируя высокочастотные токи. Это повышает коэффициент мощности и позволяет уменьшить потери в двигателе.

Кроме того, из-за высших гармоник на выходе ПЧ повышаются емкостные токи, которые могут привести к ощутимым потерям при длине кабеля более 20 м. Моторный дроссель существенно снижает этот эффект. Данные устройства также устанавливают там, где важно уменьшить помехи, создаваемые кабелем от ПЧ до электродвигателя.

Следует учитывать, что номинальный ток моторного дросселя должен быть больше максимального тока двигателя. Расчет падения напряжения на дросселе следует производить с учетом максимальной рабочей частоты двигателя, которая может достигать 400 Гц.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector