Parus16.ru

Парус №16
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как проверить блок питания компьютера

Как проверить блок питания компьютера

Как проверить блок питания компьютера . Компьютер не включается.

Итак, провод питания от розетки к блоку питания компьютера проверен. Таким образом, на блок питания подходит необходимое напряжение. Но при нажатии на кнопку включения ничего не происходит и компьютер не включается. Скорее всего, речь идёт о неисправности блока питания. Можно самостоятельно проверить блок питания , его исправность и хотя бы попытаться определиться с тем, по какой причине блок питания компьютера не работает.

Что ж, придётся освободить компьютер от боковой крышки со стороны вентиляционного отверстия. Вторую снимать необязательно. Если при нажатии на кнопку включения вентиляторы не крутятся, возможны лишь несколько вариантов. Главные причины: неисправен блок питания или кнопка включения. Да, бывает всякое, и это может быть просто неисправность кнопки или обрыв провода от кнопки к разъёму на материнской плате. Давайте выделим направление, в каком будем двигаться.

Что нам понадобится?

  • закоротка в виде металлической проволочки, небольшой кусок провода небольшого сечения; я использую радиоэлемент типа резистор номиналом в 1 кОм, но для разового опыта и скребки будет достаточно; однако надолго советую БП со скребкой не оставлять: чем меньше сечение, тем сильнее наша ипровизированная закоротка будет греться (если собираетесь проверить не только работоспособность БП, но и напряжение по основным каналам нагрузки)

Всю процедуру проверки предлагаю разбить на следующие этапы:

А кнопка-то сама работает?

Чтобы отделить неисправность блока питания от неисправности по кнопке, нам пока не понадобиться снимать сам блок питания. Для начала выньте вилку шнура питания компьютера из розетки или выключите кнопкой на задней панели блока питания.

кнопка на блоке питания

При открытой крышке проследите путь проводов включения и «светодиодных» проводов от передней панели компьютера до материнской платы. Их найти не трудно, они имеют смешанное (красные, синие, чёрные и зелёные провода) цветовое обозначение и, заканчиваясь джекерами, подключаются на разъёмы типа «папа» материнской платы. Эти разъёмы обычно находятся в нижнем квадранте платы.

разъёмы для кнопки питания

Наша задача – выделить разъём, который отвечает за включение компьютера с кнопки. Напряжение на материнской плате невелико и электрического разряда бояться не нужно. Единственный совет – стараться не повредить материнскую плату пока вы пытаетесь проверить блок питания нижеописанными манипуляциями.

Искомый разъём определить нетрудно. Он обозначен буквами с участием литер PW или POWER (от английского — питание). Как и на фото ниже, он почти всегда имеет схожую цветовую гамму проводов – зелёный ( красный или синий ) плюс белый (редко другие). Но учитывая тот факт, что нам неизвестно, кто собирал наш компьютер, самым лучшим способом определить принадлежность любых проводов, это рисунок рядом с этими разъёмами. Как видно на фото, правая часть рисунка обозначена именно этими буквами. Значит, это и есть кнопка питания. Она связана двумя проводами и она тоже поможет нам проверить блок питания .

схема подключения

схема подключения нарисована прямо на плате, а сами разъёмы на фото уже не попали, они чуть правее зоны съёмки

Указанные символы обязательны для кнопки включения. Потяните на себя и извлеките джекер из разъёма. Запомните его. В следующем шаге торчащие штырьки будем замыкать между собой. Следующим шагом вставим вилку шнура питания в розетку или включим кнопку на блоке питания.

Теперь давайте попробуем проверить блок питания на запуск

Пользуясь плоским жалом маленькой отвёртки, лезвием ножниц или канцелярской скрепкой, кратковременно перемкнём освободившиеся от джекера кнопки питания контакты материнской платы как показано на фото. Попробуйте несколько раз.

замыкание контактов

  • Если блок питания исправен и исправна сама материнская плата, компьютер включится и будет продолжать работать. Выключить компьютер можно будет простым выключением с кнопки на блоке питания, выдёргиванием вилки шнура из розетки или повторным замыканием отвёрткой тех же контактов, но удержанием до выключения.
  • Если включились кулеры блока питания, охлаждения процессора и обдува системного блока (если таковой имеется), однако с кнопки в сборе такого не происходило, блок питания в порядке и неисправность кроется в кнопке включения.
  • Если компьютер не реагирует на манипуляции, переходим к следующему шагу.

Отсоедините главный разъём ATX, идущий от блока питания к материнской плате. Это самый большой разъём, его ни с чем не спутаешь. Это 24-штырьковый (или 20 + 4) разъём:

Читайте так же:
Из за чего могут не работать колонки

разъём блока питания на плате

вспышка камеры немного испортила вид…

Нажмите большим (или указательным) пальцем на пластиковый замок сбоку, освободив разъём для демонтажа, и потяните разъём покачивающими продольными движениями на себя. Упритесь свободными пальцами при необходимости в материнскую плату. Не сломайте (хотя я ни разу не ломал).

разъём блока питания Теперь попробуем проверить блок питания и запустить его напрямую

В собранной схеме сигнал на включение идёт с кнопки через материнскую плату на контакт зелёного цвета разъёма, который вы держите в руках. Мы же минуем плату и замкнём этот контакт на любой из чёрный проводов. Чтобы проверить блок питания , замыкание контактов чёрного и зелёного цветов будем проводить кратковременно. А значит можно воспользоваться любыми подручными средствами: канцелярской скрепкой, пинцетом и т. д. Не бойтесь поражения током, напряжение в этой части системы абсолютно безопасно. Контакты, которые будут замыкаться, расположены рядом: они имеют условную нумерацию 15 и 16 (запомните это: нам нумерация пригодится при поиске остальных контактов). Чёрный провод — «земляной» (пустой), зелёный при включённом в розетку проводе несёт в себе напряжение. Замыкать можете прямо при включённом в розетку в БП; вы не пострадаете, напряжение мизерно и для человека не опасно:

перемычка между контактами

Если блок питания продолжает молчать, кулеры крутиться не хотят, неисправность заключается в блоке питания. На языке электротехники это означает, что напряжение на этом участке цепи блока питания менее положенных 5 В. Подробнее об этом в другой статье. Можете вызвать специалиста или продолжить поиски самостоятельно.

Пора проверить блок питания с помощью прибора

Если блок питания ожил, переходим к замерам прибором. Выключите блок питания на время. Переведите мультиметр в режим замера постоянных величин напряжения. На каретке прибора это сектор с символами V — :

замер постоянного напряжения

и сразу выставлю предел измерений в 20 вольт:

предел измерений 20 Вольт

Откину основных потребителей (диски, дисководы, питание на видеокарту) компьютера от шлейфов питания и сигналов:

отключить жёсткий диск

жёсткий диск отключен

А за ним и DVD дисковод:

отключить DVD дисковод

Включаем компьютер в розетку или клавишей на БП сзади. При включённом блоке питания (кулер в нём закрутился) я проверяю напряжение на выводах 24-х штырькового блока питания 12В. Распиновка блока питания приведена в одноимённой статье. Мы же замкнули провода с номерами 15 и 16. А вот как идёт сама нумерация:

порядок контактов

блок питания распиновка

Два (обычно оранжевых по краям) в противоположном от зелёного ряду — 1 и 2. И так далее слева направо. Нумерация следующего ряда также слева направо. Смотрите на фото.

Чёрный щуп прибора надолго вставляем в контакт разъёма чёрного же цвета (это будет контакт 3). Он располагается как раз напротив чёрного контакта 15, занятого скребкой. На языке специалистов это называется «посадить щуп на землю», его вынимать из разъёма на время проведения замеров вынимать не будем (можете его там зафиксировать, только не переусердствуйте):

земляной контакт блока питания

Красным щупом прибора мы поочерёдно будем проверять величину выдаваемого напряжения по всем каналам блока (сразу говорю — подопытный блок питания здоров) и начнём с 1-го:

напряжение на 1 выводе БП

Второй контакт разъёма показывает те же параметры:

напряжение на втором штырьке бп

Следующий по порядку испытуемый контакт номер 4 — это 5-ти вольтовый. Проверим ( не обожгитесь о скребку! ):

5 вольтовый выход блока питания

И так далее. И таким образом, от контакта к контакту, вы должны постепенно сравнить паспортные показания распиновки БП ( см. ссылку выше) с показаниями прибора. То есть, показания мультиметра будут примерно совпадать (с небольшой погрешностью) с показаниями в таблице статьи. Заметьте, что на контакт 3 с контактами 5, 7, 17, 18, 19, 24 прибор реагировать не должен.

ВНИМАНИЕ . Следующим этапом мы попробуем проверить блок питания под нагрузкой. Все проведённые только что замеры будут проводиться аналогично, но уже с подключённым разъёмом к плате. Когда я проводил такие замеры впервые, я отчасти пронумеровал (чтобы не запутаться) провода на разъёме бирками из изоленты. Советую и вам. Все не нужно — заметьте лишь начальную точку и порядок отсчёта. Про показатели напряжения вам напомнит цвет провода.

Проверить блок питания под нагрузкой

Если значения напряжений таблицы распиновки и показания мультиметра при работе БП на холостом ходу совпадают (погрешности замеров в пределах долей процента допустимы и лучше в большую сторону), попробуем проверить блок питания под нагрузкой. Соберём схему, подсоединив все шлейфы, и включим компьютер в работу. КРЫШКУ ПОКА НЕ ЗАКРЫВАЕМ! Нам нужен BIOS и вкладка типа Power с пунктом Hardware Monitor (версий BIOS множество, интерфейс у них разный — так что не обессудьте). У меня так:

Читайте так же:
Вопросы про компьютерные вирусы

диагностика блока питания через bios

power supply voltages

Во вкладке отображаются величины напряжений так, как их видит BIOS. Как видите, считываемая информация совпадает с измеряемыми. Блок питания работает нормально. А вот теперь стоит сверить указанные показания на экране с показаниями мультиметра при работе под нагрузкой. Вставляем разъём БП в разъём типа «мама» материнской платы, подключаем все устройства, включаем компьютер и проверяем прибором тем же порядком, также последовательно меняя щупы в выставленном диапазоне измерений, но уже таким манером:

how to check computer power supply

Думаю, некоторые выводы о работоспособности блока питания я вам помог сделать. Конечно, все эти выводы поверхностны, и о чистоте работы БП можно сказать, лишь вооружившись осциллографом.

Допуски напряжений блока питания компьютера

Немного о компьютерных БП

Если Вы не имели дела с компьютерными блоками питания, то уделите несколько минут Вашего драгоценного времени для того, чтобы понять, не вдаваясь в мелкие подробности, что у БП внутри. Компьютерные БП, обычно, заключены в металлический корпус размерами, примерно, 5 x 6 x 7 дюймов (13 x 15 x 18 см), содержат собственный охлаждающий вентилятор, прерыватель, выключатель питания (смонтированный на корпусе или короткими проводниками подключаемый к блоку) и стандартный компьютерный 3-контактный (IEC) соединитель. Габаритные мощности этих БП различаются значительно: от 135 до 300 Вт. Это та мощность, которую БП может отдать по выходу. Вам необходим БП с мощностью не менее 200 Вт и более, который имеет, однако, одно неудобство, которое будет рассмотрено позднее.

Описываемые БП от ПК обычно дают четыре выходных напряжения: + 12 VDC, -12 VDC, +5 VDC and -5 VDC (VDC = вольт постоянного тока). Отрицательные (два) напряжения, обычно, выдаются при токах, не превышающих 1 А и менее и не стоят обращения внимания на них, в нашем случае, их можно, просто, отбросить. Положительное напряжение 12 В выдаётся БП при токах от 7 до 14 А, а положительное напряжение 5 В — при токах 20…40 А, в зависимости от мощности БП.

БП, использованные мной для изготовления источника питания были выпущены в Тайване компанией «KPI «, мощность БП составляла 250 Вт, что оказалось для этих БП довольно критичной величиной. Напряжение +12 В выдавалось при токе в 10 А, а напряжение + 5 В — при токе 25 А! Эти два выхода, будучи нагруженными до предела, дают 245 Вт выходной мощности, что близко к заявленному значению этого параметра для БП. Как видно, мы имеем напряжения +5 В и +12 В с некоторыми возможностями и ограничениями в применении, с которыми нам придётся считаться.

Одним существенным замечанием, относительно компьютерных БП, является тот факт, сто эти БП – импульсные, а не обычные — линейные, к которым мы так привыкли. Имеется много явных преимуществ импульсных БП перед линейными. Большей частью эти преимущества выражаются в большем кпд БП и меньшем их нагреве. Однако, есть и такие факторы, на которые нужно обратить внимание пользователям, или, хотя бы знать, что они существуют. Первый фактор обозначается всегда на корпусе БП как ВНИМАНИЕ! (CAUTION). К БП ПК подводится сетевое питание (100…250 В переменного тока, временами необходима переустановка перемычки на большее сетевое напряжение). Переменное сетевое напряжение выпрямляется и заряжает конденсаторы большой ёмкости до напряжения 250… 400 В. Эти высокие напряжения могут, при касаниях, привести к летальному (смертельному) исходу, помните об этом, удаляя защитный корпус БП и «залезая” внутрь его. Если необходимо «заглянуть” внутрь БП, то всегда разряжайте высоковольтные конденсаторы большой ёмкости перед этим. Всегда!

Недостатком БП импульсного типа, особенно, старых разработок, является требование минимальной нагрузки на их выходных контактах. А это составляет 2… 4 ампера на выходе +5 В и от 0 до 2 А на 12-вольтовом выходе. Многие БП требуют выполнения такого условия только по выходу +5 В. А это может создать проблему, в зависимости от места, где Вы собираетесь применять БП от ПК. Простым решением проблемы может быть подключение (постоянно) на выходе стабилизатора +5 В БП резистора сопротивлением 1…2 Ом с мощностью рассеяния 25 Вт. Хотя Вы и потеряете 12,5…25 Вт мощности (снизив кпд БП), но нагрузите БП, что обеспечит высокостабильное его выходное напряжение, причём, как по выходу +5 В, так и +12 В. Этой технологии (нагрузки) нужно придерживаться и при проверке только что собранных источников питания. Дополнительный нагрузочный резистор может потребоваться и в цепи +12 В, если возникнет такая необходимость (зависит от конкретного БП). Это и есть то неудобство, о котором упоминалось ранее, но, как правило, не составляющее большой проблемы. Такую нагрузку по шине +12 В у меня вполне обеспечили два приёмника GE (видимо, фирмы General Electric). Необходимо, чтобы Вы были знакомы с приведёнными фактами, имея дело с переключателями. Без такой нагрузки, подключенной в режиме «Включено” («power on«), выходного напряжения может и не быть (не запустится преобразователь).

Читайте так же:
Вреден ли блютуз наушник

Запускаем источник питания в работу

Три типа использования выходов БП может быть предложено на старте. Во-первых, если нагрузка потребляет ток, близкий к максимально допустимому или менее по шине 12 В, то можете присоединить оборудование к чёрному и жёлтому проводам, идущим к к четырёхвыводному соединителю типа Molex. Для более мощной аппаратуры соединяйте несколько или все чёрные провода параллельно, то же нужно сделать и с жёлтыми проводами для уменьшения падения напряжения на них. Присоединяйте нагрузку к полученным, таким образом, новым контактным точкам. На всех проводах одинаковой раскраски – одинаковые напряжения. Все чёрные провода — общий провод для всех напряжений. Несколько подробнее об этом общем соединении с «землёй” чуть позднее. Из БП выходит длинный жгут, содержащий до двенадцати проводов. Этот кабель соединяется с материнской платой ПК. Он может быть использован в качестве подключения источника питания к Вашей нагрузке. Расцветка проводов идентична приведённой выше.

Вторым типом использования дешёвой энергии может быть соединение последовательно трёх источников напряжения +5 В от трёх БП ПК. Это позволит обеспечить Вас напряжением в +15 В при токе 25 А. То есть таком, который максимально может обеспечить БП ПК по этой шине. Если напряжение +15 В не соответствуют технормам на Ваше оборудование, то у Вас есть два выбора: во-первых, простое решение – поставьте последовательно в цепь питания один или два 50-амперных диода, размещённых на радиаторах. Это позволит уменьшить выходное напряжение до 14,3 или 13,6 В, соответственно. Это позволит обеспечить также развязку между зарядным устройством, в качестве которого используется БП, и имеющейся (буферной) аккумуляторной батареей. От 13.6 до 13.8 В — такое напряжение является самым подходящим для зарядки свинцовых кислотных аккумуляторных батарей без их перезарядки. Альтернативой к добавлению в цепь питания диода является удаление крышек на всех трёх БП ПК и подстройка напряжений +5 В. В большинстве БП ПК имеется хотя бы подстройка этого напряжения. Во многих встречается и подстройка напряжения +12 В. Ещё раз напоминаем об опасности, подстерегающей рискнувшего вторгнуться в пределы БП ПК, особенно, при подключенной сети. Найдите подстроечные потенциометры выходного напряжения +5 В и установите ими выходное напряжение каждого блока в пределах от 4 до 4,5 В, с целью получения на выходе общих, необходимых Вам, 12…13,5 В (выходные напряжения трёх блоков питания следует устанавливать одинаковыми с целью равномерного распределения нагрузки между ними — UA9LAQ).

Последний тип использования БП ПК заключается в комбинации двух предыдущих. За исключением соединения с общим проводом (чёрные провода выводов) все источники напряжений независимы друг от друга, изолированы. В качестве примера, я питаю два моих передатчика (GE Master) от 5-вольтовых источников мощных БП ПК, соединённых последовательно. Каждый приёмник питается отдельно напряжением 12 В от отдельных БП ПК (двух из вышеупомянутых трёх), а третий выход БП ПК на 12 В использую для обзорного приёмника, сканера и другой аппаратуры, причём, с большим запасом (и экономией) по току (относительно линейных стабилизаторов)..

Несколько мыслей напоследок: Хотя, конечно же, производители вольны вносить изменения, стандартная цветовая кодировка БП ПК существует и представлена здесь в таблице: (См. L-1)

Допуски напряжений блока питания компьютера

Главная />Статьи />Напряжения внутри компьютера. Часть первая.

Напряжения внутри компьютера. Часть первая.
Читайте так же:
Гугл карта миасса с улицами и домами
Автор: Rimlyanin
26.06.2009 12:00

 Бывают случаи, когда надо для чего-либо подключить питание от компьютера, будь это те же светодиоды или другие светоизлучающие приборы для подсветки, LCD или иные устройства вывода информации, дополнительные вентиляторы, помпы и т.д. Но часто возникает вопрос: где найти нужное напряжение?

В этой статье я постараюсь хотя бы частично ответить на это вопрос.

Для начала возьмем привычный всем разъем питания типа "молекс" (molex) с помощью которого подключается питание на винчестер, CD-ROM и т.д.

molex

Как мы видим, в нем подведены 4ре провода, по стандарту это должны быть желтый, красный, и два черных.

С этого разъема можно получить +12 или +5 вольт питания для нашего устройства.

Конечно же, эти два напряжения ещё не весь набор напряжений, необходимых для питания компьютера.

Посмотрим же на разъем подключаемый к материнской плате:

Этот разъем в течении развития стандарта менялся, при этом обеспечивалась совместимость с предыдущими версиями стандарта.

20-ти штырьковый разъем имеет следующую распиновку:

  • PW_OK (Питание в Порядке) — сигнал состояния, генерируемый блоком питания, чтобы уведомить компьютер, что напряжения +5 и +3,3 вольт в пределах диапазонов, требуемых для надлежащей работы (+5 вольт, когда питание в порядке).
  • PS_ON (Включить питание) — Замыкается на ноль для подачи блоку питания команды на подачу электропитания.
  • +5 В VSB (дежурные +5 вольт) — Напряжение подается на материнскую плату даже при выключенном компьютере.

Позднее была разработана новая версия стандарта, в которой был описан 24х штырьковый разъем.

1+3.3 ВОранжевый
2+3.3 ВОранжевый
3НольЧерный
4+5 ВКрасный
5НольЧерный
6+5 ВКрасный
7НольЧерный
8PW_OKСерый
9+5 В VSBПурпурный
10+12 ВЖелтый
11 +12 ВЖелтый
12 +3.3 ВОранжевый
13+3.3 ВОранжевый
14-12 ВСиний
15НольЧерный
16PS_ONЗеленый
17НольЧерный
18НольЧерный
19НольЧерный
20-5 ВБелый
21+5 ВКрасный
22+5 ВКрасный
23 +5 В Красный
24 Ноль Черный

Были добавлены дополнительные линии +3,3 +5 и +12 вольт.

Изменилось положение защелки, но в большинстве случаев её делают достаточной длинны для перекрытия положения в обоих версиях стандарта.

Часто у блоков питания дополнительные 4ре штырька "отстегиваются" от основного разъема, что позволяет использовать их с материнскими платами, использующие 20ти штырьковые разъемы

В большинстве случаев, если нет большой нагрузки, материнские платы, рассчитанные на 24х штырьковый разъем могут работать и с 20-ти штырьковым разъемом. В этом случае разъем подключают с некоторым "сдвигом".

Схемотехника блоков питания персональных компьютеров. Часть 1.

Блок питания компьютера

Один из самых важных блоков персонального компьютера — это, конечно, импульсный блок питания. Для более удобного изучения работы блока есть смысл рассматривать каждый его узел по отдельности, особенно, если учесть, что все узлы импульсных блоков питания различных фирм практически одинаковые и выполняют одни и те же функции. Все блоки питания рассчитаны на подключение к однофазной сети переменного тока 110/230 вольт и частотой 50 – 60 герц. Импортные блоки на частоту 60 герц прекрасно работают и в отечественных сетях.

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.

Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. Перечислим эти узлы:

Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

Узел управления. Является "мозгом" блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

Выходные выпрямители. С помощью выпрямителя происходит выпрямление — преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Довольно упрощённо структуру и взаимосвязь электронных узлов компьютерного блока питания (формат AT) можно изобразить следующим образом.

Упрощённая структура импульсного блока питания персонального компьютера

О всех этих частях схемы будет рассказано в дальнейшем.

Рассмотрим принципиальную схему импульсного блока питания по отдельным узлам. Начнём с сетевого выпрямителя и фильтра.

Сетевой фильтр и выпрямитель.

Отсюда, собственно, и начинается блок питания. С сетевого шнура и вилки. Вилка используется, естественно, по «евростандарту» с третьим заземляющим контактом.

Схема сетевого фильтра и выпрямителя БП ПК

Следует обратить внимание, что многие недобросовестные производители в целях экономии не ставят конденсатор С2 и варистор R3, а иногда и дроссель фильтра L1. То есть посадочные места есть, и печатные дорожки тоже, а деталей нет. Ну, вот прям как здесь.

Плата с неустановленными элементами фильтра

Как говорится: "No comment ".

Во время ремонта желательно довести фильтр до нужной кондиции. Резисторы R1, R4, R5 выполняют функцию разрядников для конденсаторов фильтра после того как блок отключен от сети. Термистор R2 ограничивает амплитуду тока заряда конденсаторов С4 и С5, а варистор R3 защищает блок питания от бросков сетевого напряжения.

Стоит особо рассказать о выключателе S1 ("230/115"). При замыкании данного выключателя, блок питания способен работать от сети с напряжением 110. 127 вольт. В результате выпрямитель работает по схеме с удвоением напряжения и на его выходе напряжение вдвое больше сетевого.

Если необходимо, чтобы блок питания работал от сети 220. 230 вольт, то выключатель S1 размыкают. В таком случае выпрямитель работает по классической схеме диодный мост. При такой схеме включения удвоения напряжения не происходит, да это и не нужно, так как блок работает от сети 220 вольт.

В некоторых блоках питания выключатель S1 отсутствует. В других же его располагают на тыльной стенке корпуса и помечают предупреждающей надписью. Нетрудно догадаться, что если замкнуть S1 и включить блок питания в сеть 220 вольт, то это кончится плачевно. За счёт удвоения напряжения на выходе оно достигнет величины около 500 вольт, что приведёт к выходу из строя элементов схемы инвертора.

Поэтому стоит внимательнее относиться к выключателю S1. Если предполагается использование блока питания только совместно с сетью 220 вольт, то его можно вообще выпаять из схемы.

Вообще все компьютеры поступают в нашу торговую сеть уже адаптированными на родные 220 вольт. Выключатель S1 либо отсутствует, либо переключен на работу в сети 220 вольт. Но если есть возможность и желание то лучше проверить. Выходное напряжение, подаваемое на следующий каскад составляет порядка 300 вольт.

Можно повысить надёжность блока питания небольшой модернизацией. Достаточно подключить варисторы параллельно резисторам R4 и R5. Варисторы стоит подобрать на классификационное напряжение 180. 220 вольт. Такое решение сможет уберечь блок питания при случайном замыкании выключателя S1 и включении блока в сеть 220 вольт. Дополнительные варисторы ограничат напряжение, а плакий предохранитель FU1 перегорит. При этом после несложного ремонта блок питания можно вернуть в строй.

Конденсаторы С1, С3 и двухобмоточный дроссель на ферритовом сердечнике L1 образуют фильтр способный защитить компьютер от помех, которые могут проникнуть по сети и одновременно этот фильтр защищает сеть от помех, создаваемых компьютером.

Возможные неисправности сетевого выпрямителя и фильтра.

Характерные неисправности выпрямителя, это выход из строя одного из диодов "моста" (редко), хотя бывают случаи, когда выгорает весь диодный мост, или утечка электролитических конденсаторов (гораздо чаще). Внешне это характеризуется вздутием корпуса и утечкой электролита. Подтёки очень хорошо заметны. При пробое хотя бы одного из диодов выпрямительного моста, как правило, перегорает плавкий предохранитель FU1.

При ремонте цепей сетевого выпрямителя и фильтра имейте в виду то, что эти цепи находятся под высоким напряжением, опасным для жизни ! Соблюдайте технику электробезопасности и не забывайте принудительно разряжать высоковольные электролитические конденсаторы фильтра перед проведением работ!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector