Parus16.ru

Парус №16
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Для чего нужна внешняя память

Для чего нужна внешняя память

Модуль 8. Управление данными

Тема 15. Способы доступа и организации файлов. Распределение файлов на диске

С точки зрения внутренней структуры (логической организации) файл — это совокупность однотипных записей, каждая из которых информирует о свойствах одного объекта. Записи могут быть фиксированной длины, переменной длины или неопределенной длины. Записи переменной длины в своем составе содержат длину записи, а неопределенной длины – специальный символ конца записи.

При этом каждая запись может иметь идентификатор, представляющий собой ключ, который может быть сложным и состоять из нескольких полей.

Существует три способа доступа к данным, расположенным во внешней памяти:

  1. Физически последовательный по порядку размещения записи в файле.
  2. Логическипоследовательный в соответствии с упорядочением по значению ключей. Для выполнения упорядочения создается специальный индексный файл, в соответствии с которым записи представляются для обработки.
  3. Прямой — непосредственно по ключу или физическому адресу записи.

Для организации доступа записи должны быть определенным образом расположены и взаимосвязаны во внешней памяти. Есть несколько способов логической организации памяти.

Записи располагаются в физическом порядке и обеспечивают доступ в физической последовательности. Таким образом, для обработки записи с номером N+1 необходимо последовательно обратиться к записям с номером 1, 2,….,N. Это универсальный способ организации файла периферийного устройства. Используется так же для организации входного/выходного потока.

Индексно-последовательный.

Записи располагаются в логической последовательности в соответствии со значением ключей записи. Физически записи располагаются в различных местах файла. Логическая последовательность файла фиксируется в специальной таблице индексов, в которой значение ключей связывается с физическим адресом записи. При такой организации доступ к записям осуществляется логически последовательно в порядке возрастания или убывания значения ключа или по значению ключа.

Место записи в файле, ее физический адрес, определяется алгоритмом преобразования для ключа. Доступ к записям возможен только прямой. Алгоритм преобразования ключа называется хешированием. Ключ, использующий алгоритм хеширования, преобразуется в номер записи.

Это организация, при которой осуществляется прямой доступ по порядковому номеру записи или по физическому адресу.

Организация, в которой файл состоит из последовательных подфайлов (разделов), первый из которых является оглавлением и содержит имена и адреса остальных подфайлов. При такой организации осуществляется комбинированныйдоступ: индексный прямой к разделу и последовательный в разделах.

Определить права доступа к файлу — значит определить для каждого пользователя набор операций, которые он может применить к данному файлу. В разных файловых системах может быть определен свой список дифференцируемых операций доступа. Этот список может включать следующие операции:

  • создание файла;
  • уничтожение файла;
  • открытие файла;
  • закрытие файла;
  • чтение файла;
  • запись в файл;
  • дополнение файла;
  • поиск в файле;
  • получение атрибутов файла;
  • установление новых значений атрибутов;
  • переименование;
  • выполнение файла;
  • чтение каталога;
  • и другие операции с файлами и каталогами.

В самом общем случае права доступа могут быть описаны матрицей прав доступа, в которой столбцы соответствуют всем файлам системы, строки — всем пользователям, а на пересечении строк и столбцов указываются разрешенные операции. В некоторых системах пользователи могут быть разделены на отдельные категории. Для всех пользователей одной категории определяются единые права доступа. Например, в системе UNIX все пользователи подразделяются на три категории: владельца файла, членов его группы и всех остальных. Различают два основных подхода к определению прав доступа:

  • избирательный доступ, когда для каждого файла и каждого пользователя сам владелец может определить допустимые операции;
  • мандатный подход, когда система наделяет пользователя определенными правами по отношению к каждому разделяемому ресурсу (в данном случае файлу) в зависимости от того, к какой группе пользователь отнесен.

Физически том дисковой памяти — это отдельный носитель внешней памяти, представляющий собой совокупность блоков данных. Блок — это единица физической передачи данных (единица обмена данных с устройством). Запись — это единица ввода/вывода программы. Блок может содержать несколько логических записей, что минимизирует число операций ввода/вывода (рис.1).

Рисунок 1. Коэффициент блокирования 7

Физически файл — это совокупность выделенных блоков памяти (область внешней памяти). Существует два вида организации накопителей на магнитном диске:

1.Трековый, в котором весь диск подразделяется на треки (дорожки) фиксированной длины, на которых размещаются блоки переменного размера. Адресом блока является тройка:

  • номер цилиндра;
  • номер трека;
  • номер блока.

Единицей выделения памяти является трек или цилиндр. Цилиндр представляет собой область памяти, образованную всеми дорожками, доступными на магнитных поверхностях без перемещения магнитных головок.

2.Секторный, в котором диск разбивается на блоки фиксированного размера, обычно кратного 256 байтам. Адресом блока является его порядковый номер на носителе.

Работа с дисковой памятью включает в себя 4 основные процедуры:

  1. Инициализация тома (форматирование).
  2. Выделение и освобождение памяти файлу.
  3. Уплотнение внешней памяти (дефрагментация).
  4. Копирование, восстановление томов для обеспечения целостности.
  • форматирования диска на дорожки (сектора);
  • определения сбойных участков диска;
  • присвоения метки тому;
  • создания оглавления тома;
  • записи ОС, если это необходимо.

Выделение и освобождение места для файлов на томе аналогично стратегии размещения ОП.

  1. Непрерывное распределение памяти, когда файлу выделяется непрерывный участок памяти. Для задания адреса файла в этом случае достаточно указать только номер начального блока. Достоинство этого метода — простота. Очевидный недостаток — проблема расширения файла и фрагментация. Уплотнение или дефрагментация используется для восстановления памяти.
  2. Секторное или блочное распределение, когда файлу выделяется логически связанные блоки, физически размещенные в любом месте. При таком способе в начале каждого блока содержится указатель на следующий блок. В этом случае адрес файла также может быть задан одним числом — номером первого блока. В отличие от предыдущего способа, каждый блок может быть присоединен в цепочку какого-либо файла и, следовательно, фрагментация отсутствует. Файл может изменяться во время своего существования, наращивая число блоков. Недостатком является сложность реализации доступа к произвольно заданному месту файла: для того чтобы прочитать пятый по порядку блок файла, необходимо последовательно прочитать четыре первых блока, прослеживая цепочку номеров блоков.

Популярным способом, используемым, например, в файловой системе FAT операционной системы MS-DOS, является использование связанного списка индексов. С каждым блоком (кластером) связывается некоторый элемент — индекс. Индексы располагаются в отдельной области диска (в MS-DOS это таблица FAT). Если некоторый блок распределен файлу, то индекс этого блока содержит номер следующего блока данного файла. При этом для каждого файла в каталоге имеется поле, в котором отмечается номер начального индекса для кластера, входящего в файл. Последний индекс содержит специальный маркер конца файла. Такая физическая организация сохраняет все достоинства предыдущего способа и снимает отмеченный недостаток: для доступа к произвольному месту файла достаточно прочитать только блок индексов, отсчитать нужное количество блоков файла по цепочке и определить номер нужного блока.

В заключение рассмотрим задание физического расположения файла путем простого перечисления номеров блоков, занимаемых этим файлом. ОС UNIX использует вариант данного способа, позволяющий обеспечить фиксированную длину адреса независимо от размера файла. Для хранения адреса файла выделено 13 полей. Если размер файла меньше или равен 10 блокам, то номера этих блоков непосредственно перечислены в первых десяти полях адреса. Если размер файла больше 10 блоков, то следующее, 11-е поле содержит адрес блока, в котором могут быть расположены еще 128 номеров следующих блоков файла. Если файл больше, чем 10+128 блоков, то используется 12-е поле, в котором находится номер блока, содержащего 128 номеров блоков, которые содержат по 128 номеров блоков данного файла. И, наконец, если файл больше 10+128+128(128, то используется последнее, 13-е поле для тройной косвенной адресации, что позволяет задать адрес файла, имеющего размер максимум: 10+ 128 + 128(128 + 128(128(128.

В некоторых файловых системах запросы к внешним устройствам, в которых адресация осуществляется блоками (диски, ленты), перехватываются промежуточным программным слоем-подсистемой буферизации. Подсистема буферизации представляет собой буферный пул, располагающийся в оперативной памяти, и комплекс программ, управляющих этим пулом и позволяющий выполнять опережающее считывание блоков файла при последовательном доступе. Каждый буфер пула имеет размер, равный одному блоку. При поступлении запроса на чтение некоторого блока подсистема буферизации просматривает свой буферный пул и, если находит требуемый блок, то копирует его в буфер запрашивающего процесса. Операция ввода-вывода считается выполненной, хотя физического обмена с устройством не происходило. Очевиден выигрыш во времени доступа к файлу. Если же нужный блок в буферном пуле отсутствует, то он считывается с устройства и одновременно с передачей запрашивающему процессу копируется в один из буферов подсистемы буферизации. При отсутствии свободного буфера на диск вытесняется наименее используемая информация. Таким образом, подсистема буферизации работает по принципу кэш-памяти. Кроме того, буферизация позволяет одновременно обрабатывать программой текущий блок и читать/писать в другие буфера следующий блок.

Для чего нужна внешняя память

Памятью компьютера называется совокупность устройств для хранения программ, вводимой информации, промежуточных результатов и выходных данных. Классификация памяти представлен на рисунке:

Внутренняя память предназначена для хранения относительно небольших объемов информации при ее обработке микропроцессором.

Внешняя память предназначена для длительного хранения больших объемов информации независимо от того включен или выключен компьютер.

Энергозависимой называется память, которая стирается при выключении компьютера.

Энергонезависимой называется память, которая не стирается при выключении компьютера.

К энергонезависимой внутренней памяти относится постоянное запоминающее устройство (ПЗУ). Содержимое ПЗУ устанавливается на заводе-изготовителе и в дальнейшем не меняется. Эта память составлена из микросхем, как правило, небольшого объема. Обычно в ПЗУ записываются программы, обеспечивающие минимальный базовый набор функций управления устройствами компьютера. При включении компьютера первоначально управление передается программе из ПЗУ, которая тестирует компоненты компьютера и запускает программу-загрузчик операционной системы.

К энергозависимой внутренней памяти относятся оперативное запоминающее устройство (ОЗУ), видеопамять и кэш — память . В оперативном запоминающем устройстве в двоичном виде запоминается обрабатываемая информация, программа ее обработки, промежуточные данные и результаты работы. ОЗУ обеспечивает режимы записи, считывания и хранения информации, причём в любой момент времени возможен доступ к любой произвольно выбранной ячейке памяти. Это отражено в англоязычном названии ОЗУ – RAM (Random Access Memory – память с произвольным доступом). Доступ к этой информации в ОЗУ осуществляется очень быстро. Эта память составлена из сложных электронных микросхем и расположена внутри корпуса компьютера. Часть оперативной памяти отводится для хранения изображений, получаемых на экране монитора, и называется видеопамять . Чем больше видеопамять, тем более сложные и качественные картинки может выводить компьютер. Высокоскоростная кэш-память служит для увеличения скорости выполнения операций компьютером и используется при обмене данными между микропроцессором и RAM. Кэш-память является промежуточным запоминающим устройством (буфером). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора и внешняя, размещаемая на материнской плате.

Внешняя память может быть с произвольным доступом и последовательным доступом . Устройства памяти с произвольным доступом позволяют получить доступ к произвольному блоку данных примерно за одно и то же время доступа.

Выделяют следующие основные типы устройств памяти с произвольным доступом:

1. Накопители на жёстких магнитных дисках (винчестеры , НЖМД) — несъемные жесткие магнитные диски. Ёмкость современных винчестеров от сотен мегабайт до нескольких сотен гигабайт. На современных компьютерах это основной вид внешней памяти. Первые жесткие диски состояли из 2 дисков по 30 Мбайт и обозначались 30/30, что совпадало с маркировкой модели охотничьего ружья “Винчестер” — отсюда пошло такое название этих накопителей.

2. Накопители на гибких магнитных дисках ( флоппи-дисководы , НГМД) – устройства для записи и считывания информации с небольших съемных магнитных дисков (дискет), упакованные в пластиковый конверт (гибкий — у 5,25 дюймовых дискет и жесткий у 3,5 дюймовых). Максимальная ёмкость 5,25 дюймовой дискеты — 1,2Мбайт; 3,5 дюймовой дискеты — 1,44Мбайт. В настоящее время 5,25 дюймовые дискеты морально устарели и не используются.

3. Оптические диски ( СD-ROM — Compact Disk Read Only Memory) — компьютерные устройства для чтения с компакт-дисков. CD-ROM диски получили распространение вслед за аудио-компакт дисками. Это пластиковые диски с напылением тонкого слоя светоотражающего материала, на поверхности которых информация записана с помощью лазерного луча. Лазерные диски являются наиболее популярными съемными носителями информации. При размерах 12 см в диаметре их ёмкость достигает 700 Мб. В настоящее время все более популярным становится формат компакт-дисков DVD-ROM, позволяющий при тех же размерах носителя разместить информацию объемом 4,3 Гб. Кроме того, доступными массовому покупателю стали устройства записи на компакт диски. Данная технология получила название CD-RW и DVD-RW соответственно.

Устройства памяти с последовательным доступом позволяют осуществлять доступ к данным последовательно, т.е. для того, чтобы считать нужный блок памяти, необходимо считать все предшествующие блоки. Среди устройств памяти с последовательным доступом выделяют:

1. Накопители на магнитных лентах (НМЛ) – устройства считывания данных с магнитной ленты. Такие накопители достаточно медленные, хотя и большой ёмкости. Современные устройства для работы с магнитными лентами – стримеры – имеют увеличенную скорость записи 4 — 5Мбайт в сек. Существуют также, устройства позволяющие записывать цифровую информацию на видеокассеты, что позволяет хранить на 1 кассете 2 Гбайта информации. Магнитные ленты обычно используются для создания архивов данных для долговременного хранения информации.

2. Перфокарты – карточки из плотной бумаги и перфоленты – катушки с бумажной лентой, на которых информация кодируется путем пробивания (перфорирования) отверстий. Для считывания данных применяются устройства последовательного доступа. В настоящее время данные устройства морально устарели и не применяются.

Различные виды памяти имеют свои достоинства и недостатки. Так, внутренняя память имеет хорошее быстродействие, но ограниченный объем. Внешняя память, наоборот, имеет низкое быстродействие, но неограниченный объем. Производителям и пользователям компьютеров приходится искать компромисс между объемом памяти, скоростью доступа и ценой компьютера, так комбинируя разные виды памяти, чтобы компьютер работал оптимально. В любом случае, объем оперативной памяти является основной характеристикой ЭВМ и определяет производительность компьютера.

Кратко рассмотрим принцип работы оперативной памяти . Минимальный элемент памяти — бит или разряд способен хранить минимально возможный объем информации — одну двоичную цифру. Бит очень маленькая информационная единица, поэтому биты в памяти объединяются в байты — восьмерки битов, являющиеся ячейками памяти. Все ячейки памяти пронумерованы. Номер ячейки называют ее адресом. Зная адрес ячейки можно совершать две основные операции:

1) прочитать информацию из ячейки с определенным адресом;

2) записать информацию в байт с определенным адресом.

Чтобы выполнить одну из этих операций необходимо, чтобы от процессора к памяти поступил адрес ячейки, и чтобы байт информации был передан от процессора к памяти при записи, или от памяти к процессору при чтении. Все сигналы должны передаваться по проводникам, которые объединены в шины .

По шине адреса передается адрес ячейки памяти, по шине данных – передаваемая информация. Как правило, эти процессы проходят одновременно.

Для работы ОЗУ используются еще 3 сигнала и соответственно 3 проводника. Первый сигнал называется запрос чтения, его получение означает указание памяти прочесть байт. Второй сигнал называется запрос записи, его получение означает указание памяти записать байт. Передача сразу обоих сигналов запрещена. Третий сигнал – сигнал готовности, используемый для того, чтобы память могла сообщить процессору, что она выполнила запрос и готова к приему следующего запроса.

Здесь всё, что нужно знать про файловые системы в гаджетах Apple. Например, почему Mac не работает с флешкой

Favorite В закладки

Здесь всё, что нужно знать про файловые системы в гаджетах Apple. Например, почему Mac не работает с флешкой

«Ерунда все эти твои Маки, даже с внешними дисками нормально не работают…», — в очередной раз получил подобный аргумент в пользу ПК. Хотел было кинуть в собеседника ссылкой на ликбез по вопросу на Айфонсе, но актуального не оказалось. Теперь будет.

У Apple собственный взгляд на файловые системы. Поэтому внешние накопители с Mac и другими гаджетами компании работают не всегда. Больше всего вопросов возникает с NTFS. Прочитать информацию с таких обычно можно, но изменить её не выйдет.

Собрал дальше главные вопросы, которые касаются файловых систем в гаджетах Apple. Надеюсь, многим упростил жизнь.

Все новые внешние накопители желательно сразу форматировать


»Дисковая утилита» — классный стандартный универсальный инструмент для работы с файловыми системами

Купил новую флешку, чтобы быстро переносить данные между Mac и другими гаджетами, или HDD/SSD, чтобы расширить место для хранения информации. После распаковки первым делом желательно отформатировать этот накопитель через «Дисковую утилиту».

Дело в том, что в подобных устройствах обычно сразу используется одна из двух файловых систем: либо NTFS, наиболее подходящая для Windows, либо FAT32, которая отличается максимальной совместимостью. Для Apple они не особо подходят.

Поэтому смело открывайте «Дисковую утилиту». Выбирайте накопитель в левой части интерфейса приложения и нажимайте на кнопку «Стереть». Здесь нужно определить название для диска, выбрать файловую систему в поле «Формат» и нажать «Стереть».


Форматируем диск в ExFAT — наиболее универсальный вариант

Если полный выбор здесь недоступен, и показываются только варианты APFS, значит, весь диск отформатирован в фирменной файловой системе Apple, а вы пытаетесь изменить формат только внутреннего тома. Не переживайте, с этим можно разобраться.

Для этого перейдите в меню «Вид» в строке меню и переключитесь на вариант «Показывать все устройства». Теперь в меню слева нужно выбрать не том, а диск целиком в иерархичном дереве. Его получится отформатировать в любой формат по желанию.

В стандарте есть четыре варианта, между которыми нужно определиться. У каждого есть свои особенности.

Какую файловую систему выбрать для внешнего накопителя


Либо APFS, либо ExFAT — наиболее оптимальные форматы

◉ APFS — идеально для всей техники Apple

Фирменная файловая система Apple, которая сейчас в стандарте используется на всех гаджетах её производства. Компания представила её в 2017 году как замену для Mac OS Extended. Она оптимизирована для использования с SSD и максимально безопасна.

Впрочем, APFS — это проприетарное решение Apple. Форматировать внешний накопитель в такой формат можно только в том случае, если он не будет использоваться с ПК на Windows, а также другой техникой: телевизорами или автомагнитолами.

Обратите внимание: Да, Windows официально не поддерживает APFS. Впрочем, с этим можно разобраться с помощью дополнительного программного обеспечения. Подойдёт что-то вроде Paragon APFS. Но такой софт используют редко.

APFS круто использовать со свежей техникой Apple. Со всем остальным технопарком могут возникнуть вопросы.

◉ Mac OS Extended — устаревший формат Apple

Файловая система, которую Apple использовала по умолчанию с 1998-го по 2017 год. Именно этому формату на замену пришёл APFS. Собственно, если у вас не самый свежий Mac, на нём в стандарте должен быть именно Mac OS Extended.

Эта файловая система отлично подходит для старых версий macOS, которые ещё не поддерживают APFS. Впрочем, речь в данном случае про очень старое аппаратное обеспечение или про то, которое почему-то решили ни в коем случае не обновлять.

Сегодня Mac OS Extended круто только для macOS до 2017 года. В остальном эта файловая система не особенно полезна.


Можно отформатировать как внешний диск, так и небольшую флешку

◉ MS-DOS (FAT) — максимально старая файловая система

Речь про файловую систему FAT32. С одной стороны, она достаточно универсальна и совместима с практически любым (даже очень старым) железом. С другой стороны, у неё есть пробелы по безопасности, ограничение 4 ТБ на том и 4 ГБ на один файл.

Да, к примеру, если у вас есть видеоролики большого размера, то на накопитель с такой файловой системой залить их попросту не выйдет. Лучше использовать данный формат лишь из соображений крайней необходимости — для очень старых гаджетов.

Эту файловую систему нужно использовать лишь для того, чтобы перенести какую-то информацию на очень старый гаджет.

◉ ExFAT — наиболее универсальный вариант

Компания Microsoft разработала формат ExFAT, чтобы обеспечить совместимость с FAT32, но избавиться от связанных с этой системой ограничений. Эта файловая система отлично нативно работает и с ПК на Windows, и с Mac.

Конечно, для Mac лучше использовать первый вариант из представленного здесь списка. Впрочем, если в обиходе не только техника Apple, то лучше обратить внимание конкретно на эту файловую систему.

Данный формат крут своей универсальностью — он нативно работает и с Mac, и со многими другими гаджетами.

Можно ли полноценно использовать NTFS с техникой Apple


Для работы NTFS на Mac нужен сторонний софт

Нет.

Как APFS у Apple, у Microsoft также есть своя актуальная файловая система для ПК на базе Windows. Речь про NTFS. Она используется, начиная с Windows XP, и сегодня наиболее распространена вне экосистемы компании Apple.

Mac может читать файлы на отформатированных в NTFS накопителях, но редактировать их не в состоянии. Для мобильных устройств Apple, к которым можно подключать внешние накопители (особенно касается iPad с USB-С) поддержка NTFS не заявлена.


На мобильных гаджетах Apple с NTFS плохо

Впрочем, полноценно работать с NTFS на Mac помогут сторонние утилиты. К примеру, сам пользуюсь официальной Tuxera NTFS от Microsoft, но можно попробовать и вариант Paragon NTFS, который не должен уступать по функционалу.


Системное меню Tuxera NTFS

После приобретения (да, утилиты платные) и установки драйвера для NTFS он создаёт для себя раздел в «Системных настройках» и не требует особенного внимания. В «Дисковой утилите» появляется поддержка NTFS, ограничения по работе с накопителями снимаются.

NTFS с помощью дополнительных платных утилит можно использовать на Mac, но на iPhone и iPad не получится.

Можно ли использовать сразу несколько файловых систем


Меню разбивки диска на несколько томов

Да!

Речь в данном случае про одновременное использование сразу нескольких файловых систем на одном накопителе. Их можно использовать, но на разных томах, на которые разбит диск. Собственно, в «Дисковой утилите» для этого всё есть.

Около года назад создал для себя внешний SSD, который был разбит на четыре тома. Один (NTFS) использовался для Windows, на втором (APFS) стояла последняя бета macOS, третий (APFS) отдал под Time Machine, последний (ExFAT) был вместо флешки.

Сегодня такой необходимости лично у меня нет, но опыт был. Особенных ограничений для такого использования нет.

Подводя итоги: про файловые системы и технику Apple


Сам использую преимущественно APFS

◉ APFS. Только для новых гаджетов Apple. Для них ничего лучше нет. Но с ПК и старыми macOS работает туго.

◉ Mac OS Extended. Идеально для старых гаджетов Apple. Для новых формат не нужен, как и для ПК и всего прочего.

◉ MS-DOS (FAT). Устаревшая файловая система, которая подходит для таких же старых девайсов.

◉ ExFAT. Наиболее универсальный вариант для всего и вся. Если вокруг много разной техники, то лучше такой.

◉ NTFS. Классная файловая система, но преимущественно для Windows. На Mac её можно завести сторонним софтом, но не на iPad.

В общем, если вокруг вас только техника Apple, выбирайте APFS. Если нужно взаимодействовать ещё и с чем-то другим, отдавайте предпочтение ExFAT. Остальные файловыми системы нужны в очень редких случаях, поэтому не обращайте на них внимание.

Внешняя память компьютера (2)

В 1945 г. Джон фон Нейман (1903-1957), американский ученый, выдвинул идею использования внешних запоминающих устройств для хранения программ и данных. Нейман разработал структурную принципиальную схему компьютера. Схеме Неймана соответствуют и все современные компьютеры.

Внешняя память предназначена для долговременного хранения программ и данных. Устройства внешней памяти (накопители) являются энергонезависимыми, выключение питания не приводит к потере данных. Они могут быть встроены в системный блок или выполнены в виде самостоятельных блоков, связанных с системным через его порты. Важной характеристикой внешней памяти служит ее объем. Объем внешней памяти можно увеличивать, добавляя новые накопители. Не менее важными характеристиками внешней памяти являются время доступа к информации и скорость обмена информацией. Эти параметры зависят от устройства считывания информации и организации типа доступа к ней.

По типу доступа к информации устройства внешней памяти делятся на два класса: устройства прямого (произвольного) доступа и устройства последовательного доступа. При прямом (произвольном) доступе время доступа к информации не зависит от ее места расположения на носителе. При последовательном доступе время доступа зависит от местоположения информации.

Скорость обмена информацией зависит от скорости ее считывания или записи на носитель, что определяется, в свою очередь, скоростью вращения или перемещения этого носителя в устройстве.

Внешняя (долговременная) память — это место хранения данных, не используемых в данный момент в памяти компьютера.

Устройства внешней памяти — это, прежде всего, магнитные устройства для хранения информации.

По способу записи и чтения накопители делятся, в зависимости от вида носителя, на магнитные, оптические и магнитооптические.

Раньше в вычислительной технике к внешним устройствам (ВЗУ) относили устройства хранения дискретной информации, главным образом, на магнитных лентах, барабанах, дисках.

Кто не знает, что такое магнитофон? На магнитофон мы можем записать речь, музыку, а затем прослушивать записи. Звук записывается на дорожках магнитной ленты с помощью магнитной головки. С помощью этого же устройства магнитная запись снова превращается в звук.

Аналогично действует устройство внешней памяти ЭВМ — накопитель на магнитной ленте (стриммер). На дорожки ленты записывается все тот же двоичный код: намагниченный участок — единица, не намагниченный — нуль. При чтении с ленты запись превращается в нули и единицы в битах внутренней памяти.

Они служат для запоминания больших массивов информации — наборов данных, программ пользователей и операционных систем. В процессе работы вычислительной системы по мере необходимости производится оперативный обмен информационными массивами между ВЗУ и основной памятью.

Положительным качеством ЗУ на магнитных лентах, дисках, барабанах по сравнению с оперативными ЗУ, например, на ферритовых сердечниках является их большая емкость при сравнительно низкой стоимости хранения единицы информации. Во многих ВЗУ имеется возможность быстрой смены носителей информации: катушек с магнитной лентой, пакетов магнитных дисков. Это позволяет, как бы беспредельно наращивать их емкость.

Для того, чтобы полностью оценить новейшие разработки в области внешних запоминающих устройств необходимо знать, с чего все начиналось, т. е. Историю ВЗУ.

1.1 Компьютерные носители информации, внешняя память компьютера

Для хранения программ и данных в персональных компьютерах используют различного рода накопители, общая емкость которых, как правило, в сотни раз превосходит емкость оперативной памяти. По отношению к компьютеру накопители могут быть внешними и встраиваемыми (внутренними). Внешние накопители имеют собственный корпус и источник питания, что экономит пространство внутри корпуса компьютера и уменьшает нагрузку на его блок питания. Встраиваемые накопители крепятся в специальных монтажных отсеках (drive bays), что позволяет создавать компактные системы, которые совмещают в системном блоке все необходимые устройства. Сам накопитель можно рассматривать как совокупность носителя и соответствующего привода. Различают накопители со сменными и несменными носителями.

Накопители информации представляют собой гамму запоминающих устройств с различным принципом действия физическими и технически эксплуатационными характеристиками. Основным свойством и назначением накопителей информации является хранение и воспроизведение информации. Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения, воспроизведения, записи цифровой информации. В связи с видом и техническим исполнением носителя информации различают: электронные, дисковые (магнитные, оптические, магнитооптические), ленточные, перфорационные и другие устройства.

Магнитные запоминающие устройства.

Принцип работы магнитных запоминающих устройств основаны на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственно устройств чтения/записи информации и магнитного носителя, на который, непосредственно, осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые устройства и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек расположенных по всей плоскости круглого носителя. Ленточные носители имеют продольно расположенные поля – дорожки. Запись производится, как правило, в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение полярности напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.

Магнитные запоминающие устройства широко используются в персональных компьютерах в качестве средств хранения информации.

Дисковые устройства делят на гибкие (Floppy Disk) и жесткие (Hard Disk) накопители и носители. Основным свойством дисковых магнитных устройств является запись информации на носитель на концентрические замкнутые дорожки с использованием физического и логического цифрового кодирования информации. Плоский дисковый носитель вращается в процессе чтения/записи, чем и обеспечивается обслуживание всей концентрической дорожки, чтение и запись осуществляется при помощи магнитных головок чтения/записи, которые позиционируют по радиусу носителя с одной дорожки на другую.

Дисковые устройства как накопители информации принято делить в связи с их техническими свойствами и характером исполнения, а также принципами записи:

1. магнитные дисковые накопители

2. оптические дисковые накопители

3. магнитооптические дисковые накопители

В настоящее время, дисковые устройства являются основным видом устройств хранения информации персональных компьютеров.

Магнитные дисковые накопители — гибкие диски.

В приводе флоппи-диска (гибкого диска, или просто дискеты) имеются два двигателя: один обеспечивает стабильную скорость вращения вставленной в накопитель дискеты, а второй перемещает головки записи-чтения. Скорость вращения первого двигателя зависит от типа дискеты и составляет от 300 до 360 об/мин. Двигатель для перемещения головок в этих приводах всегда шаговый. С его помощью головки перемещаются по радиусу от края диска к его центру дискретными интервалами. В отличие от привода винчестера головки в данном устройстве не «парят» над поверхностью флоппи-диска, а касаются ее.

Для подключения разных типов дисководов предназначены обычно комбинированные кабели с четырьмя разъемами, включенными попарно. Некоторые BIOS компьютеров позволяют программно изменять назначение физического адреса: «первый» (A:) и «второй» (B:) привод. В отличие от винчестеров, для флоппи-дисководов порядок накопителя (A: или B:) определяется именно положением устройства на кабеле.

Для каждого из типоразмеров дискет (5,25 или 3,5 дюйма) существуют свои специальные приводы соответствующего форм-фактора.

Дискеты каждого типоразмера (5,25 и 3,5 дюйма) бывают обычно двусторонними (Double Sided, DS), односторонние давно стали анахронизмом. Плотность записи может быть различной: одинарной (Single Density, SD), двойной (Double Density, DD) и высокой (High Density, HD). Поскольку об одинарной плотности уже мало кто вспоминает, такую классификацию обычно упрощают, говоря только о двусторонних дискетах двойной плотности (DS/DD, емкость 360 или 720 Кбайт) и двусторонних дискетах высокой плотности (DS/HD, емкость 1,2, 1,44 или 2,88 Мбайта). Плотность записи определяется величиной зазора между диском и магнитной головкой, а от стабильности зазора зависит качество записи (считывания). Для повышения плотности записи необходимо уменьшить зазор, однако при этом значительно повышаются требования к рабочей поверхности дисков.

В качестве материала для изготовления магнитных дисков обычно применяют алюминиевый сплав Д16МП (МП — магнитная память). Этот сплав немагнитный, мягкий, достаточно прочный, хорошо обрабатывается.

Гибкие диски (Floppy Disk – FD) Гибкие дисковые устройства состоят из устройства чтения/записи – дисковода и непосредственного носителя – дискеты.

Д искета представляет собой слой магнито — мягкого материала, нанесенный на специальную подложку, выполненную из полимерного немагнитного пластического материала, степень жесткости которого может быть различна в зависимости от реализации. Носитель помещается в бумажный, пластмассовый или другой кожух-корпус. В настоящее время, используются только двусторонние носители, следовательно покрытие нанесено с обеих сторон дискеты и чтение/запись производится с обеих сторон. Дискеты различного диаметра, как правило, имеют разные оформления корпуса. Так гибкие диски диаметром 5.25 дюйма помещаются в бумажный кожух, а 3.14 – в пластмассовый. Дискета в кожухе свободно вращается приводом устройства – дисковода через окно центрального захвата, что обеспечивает прохождение площади дорожки под устройством чтения/записи называемом головкой чтения/записи.

На кожухе дискеты имеются, соответственно, отверстия: центрального захвата(3), отверстие позиционирования головки(1),отверстие физической защиты от записи (5, 8), направляющие отверстия и пазы (2), отверстия автоопределения типа магнитного покрытия (9), отверстие определения полного оборота носителя (4). Отверстие для позиционирования магнитных головок чтения/ з аписи у 3.14 дюймовых носителей закрыто металлической задвижкой (7), а отверстие для центрального захвата и вращения на шпинделе привода вращения диска, в отличие от носителя диаметром 5.25 дюймов, находится только с нижней стороны дискеты.. Каждый сменный дисковый магнитный носитель перед использованием в какой-либо операционной системе необходимо подготовить к приему данных. Такая операция называется форматированием. Форматирование дискет производится при помощи специального программного обеспечения – программ форматирования дисков и, как правило, специфично для каждой операционной системы.

В зависимости от типа носителя, в соответствии с качеством магнитного покрытия, возможностями операционной системы и устройств дискеты можно форматировать для записи на них информации различного максимального объема, что достигается заданием таких параметров форматирования как число дорожек и секторов. Как правило, производителями дискет указывается параметр называемый числом точек на дюйм носителя – Track per inch (TPI). Данный параметр показывает, какую максимальную плотность размещения областей независимой намагниченности может иметь носитель. В соответствии с производственными характеристиками диска, необходимо форматировать носитель только в рамках его физических возможностей, иначе риск потери данных после операции записи неограниченно возрастает.

Дисковод представляет собой устройство чтения/записи с/на носитель – дискету. Каждый тип носителя (дискет), как правило, требует собственного устройства – для чтения 5.25 и 3.14 дюймовых дискет, хотя выпускаются и смешанные дисководы, соединяющие в себе устройства для чтения 3.14 и 5.25 дюймовых дискет. Дисководы, как правило, располагаются внутри системного блока, однако, выпускаются и внешние варианты. Снаружи системного блока находится передняя панель дисковода на которой располагаются управляющие элементы – ручка или кнопка фиксации/извлечения дискеты внутри дисковода, отверстие для помещения/извлечения дискеты, индикатор обращения к устройству, светящийся во время операций обращения к дисководу. Внутри дисковод состоит из двигателя, системы управления вращением носителя, двигателя, системы управления позиционированием головок чтения/записи, схем формирования и преобразования сигналов и др. электронных устройств. Дисководы подключаются к другим схемам компьютера посредством интерфейсного кабеля – шлейфа. На концах и/или по длине шлейфа находятся разъемы, один из которых служит для соединения шлейфа с дисководом или дисководами, другой с интерфейсом дискового устройства, находящемся на плате контроллера (интерфейсной карте, плате адаптера) дисковых устройств или на материнской плате. Дисковод также нуждается в подключении питающего напряжения при помощи кабеля питания.

голоса
Рейтинг статьи
Читайте так же:
Блок питания cougar vtx700 обзор
Ссылка на основную публикацию
Adblock
detector