Parus16.ru

Парус №16
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 3-25 В

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 3-25 В

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Не обязательно покупать дорогой регулируемый источник питания для домашней лаборатории. Его можно просто изготовить самому из имеющегося 12 вольтового импульсного адаптера. Подойдут блоки даже на 9 и 6 Вольт, единственное максимальное напряжение на выходе может немного снизится. Вся переделка схемы блока будет выражаться в небольшой замене компонентов.

Понадобится

  • Ампервольтметр — http://alii.pub/5m5n02
  • Потенциометр 10 кОм- http://alii.pub/5m5ncw
  • Клеммы — http://alii.pub/5m5nij
  • Пластиковый корпус — http://alii.pub/5m5npj
  • Микросхема-стабилизатор TL431 — http://alii.pub/5mclsi
  • Резистор 1 кОм — http://alii.pub/5h6ouv

Что в схеме нужно заменить?

Разберем корпус блока питания извлечем плату.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Регулировка стабилизации осуществляет по средствам обратной связи через оптрон. В цепи которого имеется стабилитрон который как раз и ответственен за стабильное выходное напряжение 12 В.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Нам необходимо выпаять его и заменить на регулируемый стабилитрон, сделанный на микросхеме-стабилизаторе TL431.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Вот и все, после этого можно будет при помощи переменного резистора выставить любое нужное напряжение.

Как из блока 12 В сделать регулируемый источник питания

Берем микросхему TL431 и формуем ей контакты.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Впаиваем в плату.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Допаиваем резистор 1 кОм к ближайшему общему проводу. В данной модели пустое место под конденсатор.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Припаиваем провода к потенциометру.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Подключаем его контакты к сехеме.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Корпус изготовлен на 3D принтере. Он простой, его можно сделать и без высоких технологий, скажем, как тут — https://sdelaysam-svoimirukami.ru/7377-zarjadnoe-ustrojstvo-pristavka-k-adapteru-noutbuka.html

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Устанавливаем все компоненты.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Припаиваем к лепесткам провода идущие с платы и прикручиваем к клеммам.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Устанавливаем платы в корпус.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Закрываем крышку, фиксируем винтами.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Выходное напряжение легко регулируется в пределах 3-25 В. Что, собственного говоря, даже очень хорошо. Проверяем на реальной нагрузке.

Как обычный блок питания 12 В переделать в лабораторный регулируемый источник питания 325 В

Для питания лабораторных самоделок вполне пригодится.

Смотрите видео

Применение ЦАП и АЦП

Как уже отмечалось во «Микросхемы и их функционирование» , цифро-аналоговые преобразователи ( ЦАП , DAC — «Digital-to- Analog Converter «) и аналого-цифровые преобразователи ( АЦП , ADC — » Analog -to-Digital Converter «) главным образом применяются для сопряжения цифровых устройств и систем с внешними аналоговыми сигналами, с реальным миром. При этом АЦП преобразует аналоговые сигналы во входные цифровые сигналы, поступающие на цифровые устройства для дальнейшей обработки или хранения, а ЦАП преобразует выходные цифровые сигналы цифровых устройств в аналоговые сигналы (см.рис. 2.12).

ЦАП и АЦП применяются в измерительной технике (цифровые осциллографы, вольтметры, генераторы сигналов и т.д.), в бытовой аппаратуре ( телевизоры , музыкальные центры, автомобильная электроника и т.д.), в компьютерной технике (ввод и вывод звука в компьютерах, видеомониторы, принтеры и т.д.), в медицинской технике, в радиолокационных устройствах, в телефонии и во многих других областях. Применение ЦАП и АЦП постоянно расширяется по мере перехода от аналоговых к цифровым устройствам.

В качестве ЦАП и АЦП обычно применяются специализированные микросхемы, выпускаемые многими отечественными и зарубежными фирмами.

Сразу же надо отметить, что для грамотного и профессионального использования микросхем ЦАП и АЦП совершенно не достаточно знания цифровой схемотехники. Эти микросхемы относятся к аналого-цифровым, поэтому они требуют также знания аналоговой схемотехники, существенно отличающейся от цифровой. Практическое применение ЦАП и АЦП требует расчета аналоговых цепей, учета многочисленных погрешностей преобразования (как статических, так и динамических), знания характеристик и особенностей аналоговых микросхем (в первую очередь , операционных усилителей) и многого другого, что далеко выходит за рамки этой книги. Существует обширная литература, специально посвященная именно вопросам применения ЦАП и АЦП . Поэтому в данной лекции мы не будем говорить о специфике выбора и принципах включения конкретных микросхем ЦАП и АЦП мы будем рассматривать только основные особенности методов соединения ЦАП и АЦП с цифровыми узлами. Нас будет в первую очередь интересовать организация цифровых узлов, предназначенных для соединения с ЦАП и АЦП .

Применение ЦАП

В общем случае микросхему ЦАП можно представить в виде блока (рис. 13.1), имеющего несколько цифровых входов и один аналоговый вход, а также аналоговый выход.

На цифровые входы ЦАП подается n-разрядный код N , на аналоговый вход — опорное напряжение Uоп (другое распространенное обозначение — UREF ). Выходным сигналом является напряжение Uвых (другое обозначение — UO ) или ток Iвых (другое обозначение — IO ). При этом выходной ток или выходное напряжение пропорциональны входному коду и опорному напряжению . Для некоторых микросхем опорное напряжение должно иметь строго заданный уровень, для других допускается менять его значение в широких пределах, в том числе и изменять его полярность (положительную на отрицательную и наоборот). ЦАП с большим диапазоном изменения опорного напряжения называется умножающим ЦАП , так как его можно легко использовать для умножения входного кода на любое опорное напряжение .

Кроме информационных сигналов, микросхемы ЦАП требуют также подключения одного или двух источников питания и общего провода. Обычно цифровые входы ЦАП обеспечивают совместимость со стандартными выходами микросхем ТТЛ.

Чаще всего в случае, если ЦАП имеет токовый выход, его выходной ток преобразуется в выходное напряжение с помощью внешнего операционного усилителя и встроенного в ЦАП резистора RОС, один из выводов которого выведен на внешний вывод микросхемы (рис. 13.2). Поэтому, если не оговорено иное, мы будем в дальнейшем считать, что выходной сигнал ЦАП — напряжение UO.

Читайте так же:
Видеокарта gigabyte gtx 670

Суть преобразования входного цифрового кода в выходной аналоговый сигнал довольно проста. Она состоит в суммировании нескольких токов (по числу разрядов входного кода), каждый последующий из которых вдвое больше предыдущего. Для получения этих токов используются или транзисторные источники тока, или резистивные матрицы, коммутируемые транзисторными ключами.

В качестве примера на рис. 13.3 показано 4-разрядное (n = 4) цифро-аналоговое преобразование на основе резистивной матрицы R–2R и ключей (в реальности используются ключи на основе транзисторов). Правому положению ключа соответствует единица в данном разряде входного кода N (разряды D0 dotsD3). Операционный усилитель может быть как встроенным (в случае ЦАП с выходом по напряжению), так и внешним (в случае ЦАП с выходом по току).

Первым (левым по рисунку) ключом коммутируется ток величиной UREF/2R , вторым ключом — ток UREF/4R , третьим — ток UREF/8R , четвертым — ток UREF/16R . То есть токи, коммутируемые соседними ключами, различаются вдвое, как и веса разрядов двоичного кода. Токи, коммутируемые всеми ключами, суммируются и преобразуются в выходное напряжение с помощью операционного усилителя с сопротивлением RОС=R в цепи отрицательной обратной связи .

При правом положении каждого ключа (единица в соответствующем разряде входного кода ЦАП ) ток, коммутируемый этим ключом, поступает на суммирование. При левом положении ключа (нуль в соответствующем разряде входного кода ЦАП ) ток, коммутируемый этим ключом, на суммирование не поступает.

Суммарный ток IO от всех ключей создает на выходе операционного усилителя напряжение UO=IO RОС=IOR . То есть вклад первого ключа (старшего разряда кода) в выходное напряжение составляет UREF/2 , второго — UREF/4 , третьего — UREF/8 , четвертого — UREF/16 . Таким образом, при входном коде N = 0000 выходное напряжение схемы будет нулевым, а при входном коде N = 1111 оно будет равно –15UREF/16 .

В общем случае выходное напряжение ЦАП при RОС = R будет связано со входным кодом N и опорным напряжением UREF простой формулой

где n — количество разрядов входного кода. Знак минус получается из-за инверсии сигнала операционным усилителем . Эту связь можно проиллюстрировать также табл. 13.1.

Таблица 13.1. Преобразование ЦАП в однополярном режиме

Входной код NВыходное напряжение UВЫХ
000 dots000
000 dots001-2 -n UREF
dotsdots
100 dots000-2 -1 UREF
dotsdots
111 dots111-(1-2 -n ) UREF

Некоторые микросхемы ЦАП предусматривают возможность работы в биполярном режиме, при котором выходное напряжение изменяется не от нуля до UREF , а от –UREF до +UREF . При этом выходной сигнал ЦАП UВЫХ умножается на 2 и сдвигается на величину UREF. Связь между входным кодом N и выходным напряжением UВЫХ будет следующей:

Sergei Klimanski

Чтобы идти дальше в конструировании усилителей, я уперся в проблему качественного источника. Очень был нужен хороший ЦАП. Качеством тех, которые я имел дома и которые приходилось слушать до этого я не был удовлетворен в полной мере. Если это классический ЦАП на операционных усилителях на выходе, то это как правило приводит к проблемке воспроизведения верхней середины и верхов. Середина становится слегка режущей ухо, резковатой, как-бы с песочком или металлом в голосе, особенно на высокой громкости. С ламповыми ЦАПами тоже не все в порядке – часто нет хорошего баса или плоский, невыразительный звук, да и к тому же, почему-то разработчики очень любят ставить на выходе катодный повторитель, который хотя и снижает выходное сопротивление, но по моему скромному мнению звука мягко говоря не украшает. В общем, пришел к выводу, что надо делать самому.

Почему я выбрал Ад1955 ? Ее выход рассчитан на I – U преобразователь с током 3 – 5 мА положительной полярности. А тут – широкое поле вариантов для подключения к высокому анодному напряжению таким образом, чтобы выходной ток микросхемы ЦАПа проходил через лампу.

Да, конечно, я хотел ЦАП с ламповым выходом. А учитывая мою слабость к каскадам с общей сеткой и трансформаторам – то выход был запланирован на моей любимой лампе 6Э6П с трансформаторным выходом. Выбор этой лампы обусловлен также ее невысоким внутренним сопротивлением в триоде, а также высокой крутизной ( 30 мА на вольт ), а в случае с каскадом с общей сеткой это дает пониженное входное сопротивление – и это очень хорошо для I – U преобразователей ЦАПов, для которых входное сопротивление должно стремиться к нулю. Логично сделать вход I – U преобразователя на германиевом транзисторе включенном по схеме с общей базой. Отсюда родилась и схема. По моим грубым прикидкам входное сопротивление моего гибридного каскода где-то порядка 1 Ом. Как посчитал ? Берем формулу расчета входного сопротивления каскада с общей сеткой Rin = (Ra + Ri )/( u +1 ). В нагрузке лампы 3.3 КОма, сама 6Э6П в триоде имеет около 1500 Ом. Складываем и делим на 30 – это коэффициент усиления лампы. Получается 160 Ом. Это входное сопротивление лампы, включенной по схеме с общей сеткой. Теперь для транзистора – лампа является нагрузкой Rа. Внутреннее сопротивление германиевого транзистора я не знаю, но берем грубо 50 Ом, тогда если его Кус около 250, то ( 160 + 50 ) / 250 = 0.84 Ома.

Читайте так же:
Видеокарта asus nvidia geforce gt 710

Если кому-то 6Э6П покажется слишком подчеркивающей середину, то ее можно заменить на 6Ж9П, 6Ж11П или 6Ж49П. Только в этом случае следует обратить внимание на то, чтобы коллектор транзистора был соединен с выводами 1 или 3 ламповой панельки ( а не с выводом 6 ) – тогда вы сможете простым перетыком выбрать ту лампочку, которая вам покажется более певучей.

Привожу первый вариант схемы, хотя уверен, придется его доработать, потому что нет предела совершенству….

Чтобы самому не делать цифровую часть, я взял на е-Вае платку ЦАПа на АД1955 и удалил из нее операционные усилители, также отпаял от выходов АД1955 положенные по даташиту резисторы 2К от плюса питания, а 100 пф ( конденсаторы С1 и С2 на схеме ) оставил те, которые были на плате. Более подробную деталировку дам чуть позднее.

dac_minishow

В качестве блока питания пробовал транзисторный стабилизатор, но все-таки оказался лучшим по звуку ламповый удвоитель на 6Н1П, которая все-таки потом была заменена на ЕСС99. Причина применения этой редкой лампы проста – для упаковки своего ЦАПа я использовал корпус от китайского ЦАПа Lite, который приказал долго жить, слава богу, корпус я не выкинул. Пригодились оба сетевых трансформатора, сетевая кнопка и разъемы входов – выходов. Вот схема БП:

Как видно, накал 6Э6П питается постоянным током, но нестабилизированным.

Теперь немного о прослушивании. Источник – СД-плейер Денон 1500 и сравнивал с его моим ЦАПом, подача сигнала через оптический цифровой кабель. Усилитель – мой каскод на 6Э5П – 2А3 http://klimanski.com/?p=4147. Колонки – широкополосник в ОЯ от 3АС505. Первое впечатление было совсем плохим, я был очень огорчен и уже собирался отнести свое творение в чулан в компанию к другим неудачным проектам. Мне показалось, что мой ЦАП дает излишне резкий женский вокал и трубу. Но потом – о чудо ! – оказалось, что это я на коммутаторе перед усилителем перепутал входы – то, в чем я разочаровался – это был как раз Деноновский ЦАП, а вот мой ЦАП дает прекрасную подачу материала ! И тембральный баланс, ширина сцены, и эмоциональная насыщенность будут повыше, чем у Денона. В общем, поет чистенько, детально, прозрачно, и что особенно отличает от моего фирменного Денона – очень мягкая подача вокала и вообще верхней середины и верхов – никакого звона, излишней резкости практически на любой громкости, в общем – намного натуральнее. Тут уместно сказать про “окраску” звука. Как и в колориметрии, говоря про окраску, важно ответить на вопрос – а что принято за эталон белого ? Если за этот эталон принять транзисторный звук – то да, лампы дают “окраску”. Но в моем понятии ламповый звук – это и есть эталон белого. А операционные усилители на выходе ( кстати, всегда применяемые с глубокой ООС ) дают слегка металлическую окраску и немного ненатуральный верхний регистр, что живому исполнению имхо не присуще. В общем остался весьма и весьма доволен своим творением.

Вот его характеристики

– выходное напряжие на уровне 0 дБ – 2 Вольта;

– уровень шумов – менее -80 дБ, меньше просто не нечем померить;

– суммарный коэффициент гармоник на максимальном уровне – менее 0.15 % – опять-таки пока точнее не могу измерить.

– входы – оптический и SPDIF;

– выходы – небалансный 2 Вольта и балансный 10 Вольт;

– выходное сопротивление – на небалансном выходе – менее 100 Ом, балансный выход – около 2 КОм;

– схема не содержит цепей ООС.

Вот как выглядит упакованный в корпус прибор и фото всего комплекта аппаратуры для прослушивания.

imag0218_2

imag0220_2

Выходные трансформаторы были намотаны на заказ в фирме Аудиоинструмент, за что поклон Сергею Глазунову. А еще – читайте на форуме http://www.diyaudio.ru/forum/index.php?topic=4180.0 . Мои первые попытки ( не совсем удачные ) сделать ЦАП только на лампах есть в другой ветке на этом же форуме http://www.diyaudio.ru/forum/index.php?topic=1267.570.

Дополнено 6 июня 2015 года. Пришлось немного подкорректировать схемку. Во-первых, на пиках громкости наблюдался возбуд ( резонансы ) и поэтому пришлось добавить конденсаторы С3 и С5 в сетки ламп, а также С1 и С6 в аноды. Также, по причине дрейфа напряжения на выходе АД1955 пришлось застабилизировать базы транзиcторов при помощи стабилитрона Д1 на 3.0 вольта. Ну, и все-таки 6Э6П я заменил на 6Ж49П – мне она из всех перечисленных ранее показалась самой сбалансированной тембрально.

Применение ЦАП

Схемы применения цифро-аналоговых преобразователей относятся не только к области преобразования код — аналог. Пользуясь их свойствами можно определять произведения двух или более сигналов, строить делители функций, аналоговые звенья, управляемые от микроконтроллеров, такие как аттенюаторы, интеграторы. Важной областью применения ЦАП являются также генераторы сигналов, в том числе сигналов произвольной формы. Ниже рассмотрены некоторые схемы обработки сигналов, включающие ЦА-преобразователи.

Читайте так же:
Для чего нужен адаптер для ноутбука

Обработка чисел, имеющих знак

До сих пор при описании цифро-аналоговых преобразователей входная цифровая информация представлялась в виде чисел натурального ряда (униполярных). Обработка целых чисел (биполярных) имеет определенные особенности. Обычно двоичные целые числа представляются с использованием дополнительного кода. Таким путем с помощью восьми разрядов можно представить числа в диапазоне от -128 до +127. При вводе чисел в ЦАП этот диапазон чисел сдвигают до 0. 255 путем прибавления 128. Числа, большие 128, при этом считаются положительными, а числа, меньшие 128, — отрицательными. Среднее число 128 соответствует нулю. Такое представление чисел со знаком, называется смещенным кодом. Прибавление числа, составляющего половину полной шкалы данной разрядности (в нашем примере это 128), можно легко выполнить путем инверсии старшего (знакового) разряда. Соответствие рассмотренных кодов иллюстрируется табл. 1.

Чтобы получить выходной сигнал с правильным знаком, необходимо осуществить обратный сдвиг путем вычитания тока или напряжения, составляющего половину шкалы преобразователя. Для различных типов ЦАП это можно сделать разными способами. Например, у ЦАП на источниках тока, диапазон изменения опорного напряжения ограничен, причем выходное напряжение имеет полярность обратную полярности опорного напряжения. В этом случае биполярный режим наиболее просто реализуется включением дополнительного резистора смещения Rсм между выходом ЦАП и входом опорного напряжения (рис. 18а). Резистор Rсм изготавливается на кристалле ИМС. Его сопротивление выбрано таким, чтобы ток Iсм составлял половину максимального значения выходного тока ЦАП.

В принципе, аналогично можно решить задачу смещения выходного тока и для ЦАП на МОП-ключах. Для этого нужно проинвертировать опорное напряжение, а затем сформировать из -Uоп ток смещения, который следует вычесть из выходного тока ЦАП. Однако для сохранения температурной стабильности лучше обеспечить формирование тока смещения непосредственно в ЦАП. Для этого в схему на рис. 8а вводят второй операционный усилитель и второй выход ЦАП подключают ко входу этого ОУ (рис. 18б).

Второй выходной ток ЦАП, согласно (10),

(21)

На входе ОУ1 ток I’вых суммируется с током Iмр, соответствующим единице младшего разряда входного кода. Суммарный ток инвертируется. Ток, протекающий через резистор обратной связи Rос ОУ2, составляет

Это в случае N=8 с точностью до множителя 2 совпадает с данными табл. 6, с учетом того, что для преобразователя на МОП-ключах максимальный выходной ток

Если резисторы R2 хорошо согласованы по сопротивлению, то абсолютное изменение их величины при колебаниях температуры не влияет на выходное напряжение схемы.

У цифро-аналоговых преобразователей с выходным сигналом в виде напряжения, построенных на инверсной резистивной матрице (см. рис. 9), можно более просто реализовать биполярный режим (рис. 18в). Как правило, такие ЦАП содержат на кристалле выходной буферный усилитель. Для работы ЦАП в униполярном включении свободный вывод нижнего по схеме резистора R не подключают, либо подключают к общей точке схемы для удвоения выходного напряжения. Для работы в биполярном включении свободный вывод этого резистора соединяют со входом опорного напряжения ЦАП. ОУ в этом случае работает в дифференциальном включении и его выходное напряжение с учетом (16)

(26)

Перемножители и делители функций

Как уже указывалось выше, ЦА-преобразователи на МОП-ключах, допускают изменение опорного напряжения в широких пределах, в том числе и смену полярности. Из формул (8) и (17) следует, что выходное напряжение ЦАП пропорционально произведению опорного напряжения на входной цифровой код. Это обстоятельство позволяет непосредственно использовать такие ЦАП для перемножения аналогового сигнала на цифровой код.

При униполярном включении ЦАП выходной сигнал пропорционален произведению двухполярного аналогового сигнала на однополярный цифровой код. Такой перемножитель называют двухквадрантным. При биполярном включении ЦАП (рис. 18б и 18в) выходной сигнал пропорционален произведению двухполярного аналогового сигнала на двухполярный цифровой код. Эта схема может работать как четырехквадрантный перемножитель.

Деление входного напряжения на цифровой масштаб MD=D/2 N выполняется с помощью схемы двухквадрантного делителя (рис. 19).

В схеме на рис. 19а преобразователь на МОП-ключах с токовым выходом работает как преобразователь «напряжение-ток», управляемый кодом D и включенный в цепь обратной связи ОУ. Входное напряжение подается на свободный вывод резистора обратной связи ЦАП, размещенного на кристалле ИМС. В этой схеме выходной ток ЦАП

что при выполнении условия Rос=R дает

Следует отметить, что при коде «все нули» обратная связь размыкается. Предотвратить этот режим можно, либо запретив такой код программно, либо включив между выходом и инвертирующим входом ОУ резистор с сопротивлением, равным R·2 N+1 .

Схема делителя на основе ЦАП с выходом в виде напряжения, построенном на инверсной резистивной матрице и включающем буферный ОУ, приведена на рис. 8.19б. Выходное и входное напряжения этой схемы связаны уравнением

(27)

В данной схеме усилитель охвачен как положительной, так и отрицательной обратными связями. Для преобладания отрицательной обратной связи (иначе ОУ превратится в компаратор) необходимо выполнение условия D<2 N-1 или MD<1/2. Это ограничивает значение входного кода нижней половиной шкалы.

Аттенюаторы и интеграторы на ЦАП

Аттенюаторы, т.е. регуляторы уровня сигнала, с цифровым управлением гораздо более надежны и долговечны, чем традиционные аттенюаторы на основе переменных резисторов. Их целесообразно использовать в измерительных приборах и других устройствах, требующих подстройки параметров, особенно автоматической. Такие аттенюаторы можно наиболее просто построить на основе перемножающего ЦАП с инверсной резистивной матрицей и буферным усилителем. В принципе для этой цели подойдет любой ЦАП указанного типа, но некоторыми фирмами выпускаются преобразователи, оптимизированные для выполнения указанной функции. На рис. 20а приведена схема аттенюатора на переменном резисторе, а на рис. 20б — аналогичная схема на перемножающем ЦАП.

Читайте так же:
Видеокарта intel core i5 цена

Если входной сигнал — однополярный, целесообразно использовать ЦАП с однополярным питанием, но буферный ОУ должен иметь выход «rail-to-rail», т.е. его выходное напряжение должно достигать нуля и напряжения питания. Если ЦАП — многоканальный, то у каждого преобразователя микросхемы должен быть индивидуальный вход опорного напряжения. Этим требованиям в разной степени удовлетворяют такие ИМС ЦАП, как 2-х канальный 12-разрядный МАХ532, 4-х канальный 8-разрядный МАХ509, 8-ми канальный 8-разрядный AD8441, 8-ми канальный 8-разрядный DAC-8841 и др.

Для построения интегратора с цифровой установкой постоянной времени интегрирования можно использовать базовую схему интегратора, а в качестве входного резистора включить ЦАП с суммированием напряжений (рис. 12). На базе такой схемы можно построить фильтры, в том числе фильтры на основе метода переменных состояния, перестраиваемые генераторы импульсов и т.д.

Системы прямого цифрового синтеза сигналов

Важной областью применения ЦАП является синтез аналоговых сигналов необходимой формы. Аналоговые генераторы сигналов — синусоидальной, треугольной и прямоугольной форм — имеют низкую точность и стабильность, не могут управляться от ЭВМ. В последние годы получили развитие системы прямого цифрового синтеза сигналов, обеспечивающие высокую точность задания частоты и начальной фазы сигналов, а также высокую верность воспроизведения их формы. Более того, эти системы позволяют генерировать сигналы большого многообразия форм, в том числе и форм, задаваемых пользователем. Упрощенная блок-схема генератора прямого цифрового синтеза сигналов приведена на рис. 21.

В принципе, системы прямого цифрового синтеза просты. Более того, теория и основные способы построения таких систем известны уже около 30 лет. Правда, только недавно появились ЦАП и специализированные аналого-цифровые ИМС, подходящие для синтеза сигналов в широкой полосе частот.

Схема прямого цифрового синтеза содержит три основных блока: генератор фазового угла, память и ЦАП. Генератор фазового угла в типичном случае представляет собой накапливающий сумматор с регистром. Работает он просто как регистр фазы, содержимое которого получает приращение на некоторый фазовый угол через заданные интервалы времени. Приращение фазы Dj загружается в виде цифрового кода во входные регистры. Память играет роль таблицы функций. Код текущей фазы поступает на ее адресные входы, а с выхода данных на вход ЦА-преобразователя поступает код, соответствующий текущему значению заданной функции. ЦАП в свою очередь формирует аналоговый сигнал.

Регистр содержит текущую фазу выходного сигнала в виде целого числа, которое будучи поделено на 2N, где N -разрядность сумматора, равно доле периода. Увеличение разрядности регистра повышает только разрешающую способность этой доли. Частота выходного сигнала равна произведению частоты тактов fтакт на приращение фазы в каждом периоде тактов. При использовании N-разрядного сумматора частота выходного сигнала будет равна

Генераторы прямого синтеза выпускаются в виде ИМС. В частности, микросхема AD9850, упрощенная структура которой представлена на рис. 21, содержит 32-разрядный генератор фазового угла и 10-разрядный ЦАП. Загрузка приращения фазы осуществляется по 8-разрядной шине данных побайтово в четыре входных регистра. Память содержит таблицу синусов. Максимально допустимая тактовая частота составляет 125 МГц. При этом разрешение по частоте составляет 0,0291 Гц. Быстрый интерфейс позволяет менять частоту выходного сигнала до 23 миллионов раз в секунду.

Питание Hi-End усилителей , и другой звуковоспроизводящей техники

Про питание уже всё ясно — транс должен быть большим и толстым, чтоб напряжение не просаживалось при больших токах потреблния.
Выпрямитель. Часто приходится слышать про необходимость применения ультрабыстых диодов, которые проводят большие токи и закрываются в течение десятых долей наносекунд. Это бывает важно в импульсных БП, а на 50 герцах такое быстродействие не нужно, и даже вредит. Быстрое изменение тока как раз и приводит к появлению коммутационных помех. Диод лучше всего замедлить шунтированием небольшой емкостью, это значительно снизит коммутационные помехи.

Конденсаторы фильтра, ясное дело, должны быть большими. Большие электролиты увеличивают свое сопротивление с повышением частоты, поэтому их часто шунтируют пленочными кондерами, чтобы сохранить сопротивление низким на высоких частотах. Но основная мощность аудиосигнала концентрируется на низких частотах(до нескольких килогерц), а для воспроизведения верхних частот энергия почти не потребляется.
А шунтирующий плёночный кондер может связаться с внутренней индуктивностью большого конденсатора в колебательный контур и устойчивость усилителя сильно пошатнется.
Если используется стабилизатор напряжения питания, то он должен быть расчитан на ток, раз в 5-10 превышающий потребление усилка.
Кроме того, стабилизатору должны предшествовать и следовать за ним емкости сравнимые с применяемыми в схемах без стабилизации.
И лучше применить раздельные стабилизаторы для выходного каскада и остальной части усилка.
Вместо питания стабилизированным напряжением можно нагрузить каскады на источники тока, тут кроме уменьшения фона сети улучшится линейность схемы.
Поэтому, для меня, оптимальная схема выходного каскада — это однотакт в классе А, нагруженный на источник тока, я ведь не борюсь за предельное удешевление своих схем, я хочу чтоб они хорошо играли.

Читайте так же:
Динамика цен на поставляемые товары

Сообщений: 1 119
Из: Космоса

Пока сформулирую некоторые вопросы, на все из них я частично знаю ответы, но только частично. Много неясного, и хорошо бы если участники форума поделились мнениями, а лучше доказанной и проверенной инфой.

?
1) Каким образом объясняется влияние на качество звука конструкция шнура сетевого питания, которым усилитель включен в электрическую розетку? Сам присутствовал при эксперименте, когда усилитель включали сначала посредством обычного компьютерного шнура питания под "евро", а потом таким же по внешнему виду, но очень дорогим кабелем с десятками хитро перекрученных жил. Разница в звуке не маленькая. При этом к электрической розетке, находяшейся дома на стене, электричество доставлялось по самым дешевым алюминиевым, проложенным строителями, проводам

2) Влияние параметров выпрямительных диодов в выпрямителе питания. Коммутационные помехи, обусловленные "медленными" диодами. Понимаю что "ultra fast recovery" диоды лучше низкочастотных. В то же время много где читал, что Шоттки лучше чем fast recovery, и нигде нет объясния, почему. Еще есть мнение, что дроссели по

50 мкГн перед выпрямителем оказывают такой эффект, что 50 Гц диоды работают не хуже fast recovery.
Отдельный вопрос — использование синхронного выпрямителя (можно и на MOSFET), позволяющего вообще убрать коммутационные помехи.

3) "Аудиофильские" электролиты типа Black Gate чем то отличаются (кроме цены) от качественных low esr кондеров для импульсных блоков питания, или все только маркетинг, а под этикеткой один и тот же элемент?

4) Есть ли разница для звука между тороидальным и Ш-образным трансом? Можно это строго инженерно доказать? Камень в сторону тороидов: известно, что если тороид навит из ленты, его КПД ниже чем у Ш-образного, так как такой тороид имеет немаленький распределенный немагнитный зазор и заставляет поток проходить через витки стальной ленты.

Интересны мнения участников форума!

Сообщений: 1 280

QUOTE
Шоттки лучше чем fast recovery, и нигде нет объясния, почему.

Сообщений: 1 119
Из: Космоса

QUOTE
Конкретно Блек Гейт отличается содержанием графита в бумаге диелектрика, из -за чего доминирует не медленный ионный ток, а быстрый электронный

Это уже конструкция и технология изготовления. Но какие конкретно параметры это улучшает? По-моему все эти параметры для емкости в фильтре импульсного блока питания не менее важны, чем в питалове для аудио. Я просто не вникал, чем технологически отличаются "коричневые" LOW ESR конденсаторы от обычных "голубых" — вероятно тем же самым.

Сообщений: 1 280

QUOTE
эти параметры для емкости в фильтре импульсного блока питания не менее важны, чем в питалове для аудио.

1. ИМХО, СВЧ помехи, амплитуда которых зависит от распределенных параметров кабеля и его положения в пространстве. Пару месяцев назад, когда был доступ к осцу с граничной частотой 2ГГц, оценивал влияние различных кабелей на уровень помехи 900МГц на вторичной обмотке силового трансформатора. В качестве источника помехи использовался мобильник С330, расположенный в полуметре от кабеля. Транс был помещен в двойной экран пермаллой- посеребренная латунь, соединенный с общим проводом щупа осциллографа.Испытывались кабели ШВВП, беспородный китайский, коаксиальный РК75, диаметром 8мм, коаксиальный РК50, 4мм, фторопласт, серебро, а также витая пара из алюминиевого монтажного провода. С ШВВП и китайским кабелями уровень наведенной помехи достигал 4В, причем амплитуда помехи сильно зависела от положения в пространстве, с кабелями РК уровень помехи достигал 100мВ. С алюминиевым проводом помеха была на уровне коаксиалов, возможно это объясняется тем, что алюминий, за счет содержания марганца, имеет магнитную проницаемость порядка 3-4, в результате чего скин- эффект у него выражен гораздо сильнее, чем у меди, а на гигагерцовых частотах он фактически становится изолятором. Включение перед трансом фильтра, состоящего из синфазного транса и 2-х кондеров К78-4 0,01мкФ, шунтированных слюдой СГМ 3300пФ практически не привело к уменьшению помех.
2. У быстрых диодов меньше угол открывания, следовательно меньший уровень помех.

3. Для импульсников требуется только низкий уровень ESR, малая индуктивность, малые гистерезисные потери в диэлектрике, величина нелинейности емкости от напряжения и диэлектрической абсорбции не нормируется, поскольку для импульсников это не нужно.

4. Как раз у тороидальных трансов зазор гораздо меньше, чем у Ш-образных, и поэтому они имеют гораздо большую склонность к насышению при появлении постоянной составляющей в сетевом напряжении. Также тороиды имеют бОльшую межобмоточную емкость, по сравнению с Ш-образными. Меньший КПД тороидов обусловлен малым коэффициентом заполнения окна. В то же время поток рассеяния тороида значительно меньше, чем у Ш-образного

Сообщений: 1 119
Из: Космоса

Dark Abbat — интересные мысли, обдумаю!!!

yaghtn, в хороших усилителях электролитов в сигнальных цепях вообще нет. А в очень хороших там вообще нет емкостей, только гальваническая связь.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector