Parus16.ru

Парус №16
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок питания на tda2030

Блок питания на tda2030

(Лучше ссылку посмотреть,а то тут я картинки перепутал похоже и не все вставил.)

Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics пользуется заслуженной популярностью среди радиолюбителей. Она обладает высокими электрическими характеристиками и низкой стоимостью, что позволяет при минимальных затратах собирать на ней высококачественные УНЧ мощностью до 18 Вт. Однако не все знают о ее «скрытых достоинствах»: оказывается, на этой ИМС можно собрать ряд других полезных устройств. Микросхема TDA2030A представляет собой 18 Вт Hi-Fi усилитель мощности класса АВ или драйвер для УНЧ мощностью до 35 Вт (с мощными внешними транзисторами). Она обеспечивает большой выходной ток, имеет малые гармонические и интермодуляционные искажения, широкую полосу частот усиливаемого сигнала, очень малый уровень собственных шумов, встроенную защиту от короткого замыкания выхода, автоматическую систему ограничения рассеиваемой мощности, удерживающую рабочую точку выходных транзисторов ИМС в безопасной области. Встроенная термозащита обеспечивает выключение ИМС при нагреве кристалла выше 145.С. Микросхема выполнена в корпусе Pentawatt и имеет 5 выводов. Вначале вкратце рассмотрим несколько схем стандартного применения ИМС — усилителей НЧ. Типовая схема включения TDA2030A показана на рис.1.

Типовая схема включения TDA2030A

Микросхема включена по схеме неинвертирующего усилителя. Коэффициент усиления определяется соотношением сопротивлений резисторов R2 и R3, образующих цепь ООС. Вычисляется он по формуле Gv=1+R3/R2 и может быть легко изменен подбором сопротивления одного из резисторов. Обычно это делают с помощью резистора R2. Как видно из формулы, уменьшение сопротивления этого резистора вызовет увеличение коэффициента усиления (чувствительности) УНЧ. Емкость конденсатора С2 выбирают исходя из того, чтобы его емкостное сопротивление Хс=1 /2?fС на низшей рабочей частоте было меньше R2 по крайней мере в 5 раз. В данном случае на частоте 40 Гц Хс2=1/6,28*40*47*10-6=85 Ом. Входное сопротивление определяется резистором R1. В качестве VD1, VD2 можно применить любые кремниевые диоды с током IПР0,5. 1 А и UОБР более 100 В, например КД209, КД226, 1N4007. Схема включения ИМС в случае использования однополярного источника питания показана на рис.2.

Делитель R1R2 и резистор R3 образуют цепь смещения для получения на выходе ИМС (вывод 4) напряжения, равного половине питающего. Это необходимо для симметричного усиления обеих полуволн входного сигнала. Параметры этой схемы при Vs=+36 В соответствуют параметрам схемы, показанной на рис.1, при питании от источника +18 В. Пример использования микросхемы в качестве драйвера для УНЧ с мощными внешними транзисторами показан на рис.3.

При Vs=+18 В на нагрузке 4 Ом усилитель развивает мощность 35 Вт. В цепи питания ИМС включены резисторы R3 и R4, падение напряжения на которых является открывающим для транзисторов VT1 и VT2 соответственно. При малой выходной мощности (входном напряжении) ток, потребляемый ИМС, невелик, и падения напряжения на резисторах R3 и R4 недостаточно для открывания транзисторов VT1 и VT2. Работают внутренние транзисторы микросхемы. По мере роста входного напряжения увеличивается выходная мощность и потребляемый ИМС ток. При достижении им величины 0,3. 0,4 А падение напряжения на резисторах R3 и R4 составит 0,45. 0,6 В. Начнут открываться транзисторы VT1 и VT2, при этом они окажутся включенными параллельно внутренним транзисторам ИМС. Возрастет ток, отдаваемый в нагрузку, и соответственно увеличится выходная мощность. В качестве VT1 и VT2 можно применить любую пару комплементарных транзисторов соответствующей мощности, например КТ818, КТ819. Мостовая схема включения ИМС показана на рис.4.

Сигнал с выхода ИМС DA1 подается через делитель R6R8 на инвертирующий вход DA2, что обеспечивает работу микросхем в противофазе. При этом возрастает напряжение на нагрузке, и, как следствие, увеличивается выходная мощность. При Vs=+16 В на нагрузке 4 Ом выходная мощность достигает 32 Вт. Для любителей двух-, трехполосных УНЧ данная ИМС — идеальный вариант, ведь непосредственно на ней можно собирать активные ФНЧ и ФВЧ. Схема трехполосного УНЧ показана на рис.5.

Низкочастотный канал (НЧ) выполнен по схеме с мощными выходными транзисторами. На входе ИМС DA1 включен ФНЧ R3C4, R4C5, причем первое звено ФНЧ R3C4 включено в цепь ООС усилителя. Такое схемное решение позволяет простыми средствами (без увеличения числа звеньев) получать достаточно высокую крутизну спада АЧХ фильтра. Среднечастотный (СЧ) и высокочастотный (ВЧ) каналы усилителя собраны по типовой схеме на ИМС DA2 и DA3 соответственно. На входе СЧ канала включены ФВЧ C12R13, C13R14 и ФНЧ R11C14, R12C15, которые вместе обеспечивают полосу пропускания 300. 5000 Гц. Фильтр ВЧ канала собран на элементах C20R19, C21R20. Частоту среза каждого звена ФНЧ или ФВЧ можно вычислить по формуле fСР=160/RC, где частота f выражена в герцах, R — в килоомах, С — в микрофарадах. Приведенные примеры не исчерпывают возможностей применения ИMC TDA2030A в качестве усилителей НЧ. Так, например, вместо двухполярного питания микросхемы (рис.3,4) можно использовать однополярное питание. Для этого минус источника питания следует заземлить, на неинвертирующий (вывод 1) вход подать смещение, как показано на рис.2 (элементы R1-R3 и С2). Наконец, на выходе ИМС между выводом 4 и нагрузкой необходимо включить электролитический конденсатор, а блокировочные конденсаторы по цепи -Vs из схемы исключить.

Рассмотрим другие возможные варианты использования этой микросхемы. ИМС TDA2030A представляет собой не что иное, как операционный усилитель с мощным выходным каскадом и весьма неплохими характеристиками. Основываясь на этом, были спроектированы и опробованы несколько схем нестандартного ее включения. Часть схем была опробована «в живую», на макетной плате, часть — смоделирована в программе Electronic Workbench.

Мощный повторитель сигнала.

Сигнал на выходе устройства рис.6 повторяет по форме и амплитуде входной, но имеет большую мощность, т.е. схема может работать на низкоомную нагрузку. Повторитель может быть использован, например, для умощнения источников питания, увеличения выходной мощности низкочастотных генераторов (чтобы можно было непосредственно испытывать головки громкоговорителей или акустические системы). Полоса рабочих частот повторителя линейна от постоянного тока до 0,5. 1 МГц, что более чем достаточно для генератора НЧ.

Умощнение источников питания.

Микросхема включена как повторитель сигнала, выходное напряжение (вывод 4) равно входному (вывод 1), а выходной ток может достигать значения 3,5 А. Благодаря встроенной защите схема не боится коротких замыканий в нагрузке. Стабильность выходного напряжения определяется стабильностью опорного, т.е. стабилитрона VD1 рис.7 и интегрального стабилизатора DA1 рис.8. Естественно, по схемам, показанным на рис.7 и рис.8, можно собрать стабилизаторы и на другое напряжение, нужно лишь учитывать, что суммарная (полная) мощность, рассеиваемая микросхемой, не должна превышать 20 Вт. Например, нужно построить стабилизатор на 12 В и ток 3 А. В наличии есть готовый источник питания (трансформатор, выпрямитель и фильтрующий конденсатор), который выдает UИП= 22 В при необходимом токе нагрузки. Тогда на микросхеме происходит падение напряжения UИМС= UИП — UВЫХ = 22 В -12 В = 10В, и при токе нагрузки 3 А рассеиваемая мощность достигнет величины РРАС= UИМС*IН = 10В*3А = 30 Вт, что превышает максимально допустимое значение для TDA2030A. Максимально допустимое падение напряжения на ИМС может быть рассчитано по формуле:
UИМС= РРАС.МАХ / IН. В нашем примере UИМС= 20 Вт / 3 А = 6,6 В, следовательно максимальное напряжение выпрямителя должно составлять UИП = UВЫХ+UИМС = 12В + 6,6 В =18,6 В. В трансформаторе количество витков вторичной обмотки придется уменьшить. Сопротивление балластного резистора R1 в схеме, показанной на рис.7, можно посчитать по формуле:
R1 = ( UИП — UСТ)/IСТ, где UСТ и IСТ — соответственно напряжение и ток стабилизации стабилитрона. Пределы тока стабилизации можно узнать из справочника, на практике для маломощных стабилитронов его выбирают в пределах 7. 15 мА (обычно 10 мА). Если ток в вышеприведенной формуле выразить в миллиамперах, то величину сопротивления получим в килоомах.

Читайте так же:
Блок питания для компьютера своими руками схема

Простой лабораторный блок питания.

Электрическая схема блока питания показана на рис.9. Изменяя напряжение на входе ИМС с помощью потенциометра R1, получают плавно регулируемое выходное напряжение. Максимальный ток, отдаваемый микросхемой, зависит от выходного напряжения и ограничен все той же максимальной рассеиваемой мощностью на ИМС. Рассчитать его можно по формуле:
IМАХ = РРАС.МАХ / UИМС
Например, если на выходе выставлено напряжение UВЫХ = 6 В, на микросхеме происходит падение напряжения UИМС = UИП — UВЫХ = 36 В — 6 В = 30 В, следовательно, максимальный ток составит IМАХ = 20 Вт / 30 В = 0,66 А. При UВЫХ = 30 В максимальный ток может достигать максимума в 3,5 А, так как падение напряжения на ИМС незначительно (6 В).

Стабилизированный лабораторный блок питания.

Электрическая схема блока питания показана на рис.10. Источник стабилизированного опорного напряжения — микросхема DA1 — питается от параметрического стабилизатора на 15 В, собранного на стабилитроне VD1 и резисторе R1. Если ИМС DA1 питать непосредственно от источника +36 В, она может выйти из строя (максимальное входное напряжение для ИМС 7805 составляет 35 В). ИМС DA2 включена по схеме неинвертирующего усилителя, коэффициент усиления которого определяется как 1+R4/R2 и равен 6. Следовательно, выходное напряжение при регулировке потенциометром R3 может принимать значение практически от нуля до 5 В * 6=30 В. Что касается максимального выходного тока, для этой схемы справедливо все вышесказанное для простого лабораторного блока питания (рис.9). Если предполагается меньшее регулируемое выходное напряжение (например, от 0 до 20 В при UИП = 24 В), элементы VD1, С1 из схемы можно исключить, а вместо R1 установить перемычку. При необходимости максимальное выходное напряжение можно изменить подбором сопротивления резистора R2 или R4.

Регулируемый источник тока.

Электрическая схема стабилизатора показана на рис.11. На инвертирующем входе ИМС DA2 (вывод 2), благодаря наличию ООС через сопротивление нагрузки, поддерживается напряжение UBX. Под действием этого напряжения через нагрузку протекает ток IН = UBX / R4. Как видно из формулы, ток нагрузки не зависит от сопротивления нагрузки (разумеется, до определенных пределов, обусловленных конечным напряжением питания ИМС). Следовательно, изменяя UBX от нуля до 5 В с помощью потенциометра R1, при фиксированном значении сопротивления R4=10 Ом, можно регулировать ток через нагрузку в пределах 0. 0,5 А. Данное устройство может быть использовано для зарядки аккумуляторов и гальванических элементов. Зарядный ток стабилен на протяжении всего цикла зарядки и не зависит от степени разряженности аккумулятора или от нестабильности питающей сети. Максимальный зарядный ток, выставляемый с помощью потенциометра R1, можно изменить, увеличивая или уменьшая сопротивление резистора R4. Например, при R4=20 Ом он имеет значение 250 мА, а при R4=2 Ом достигает 2,5 А (см. формулу выше). Для данной схемы справедливы ограничения по максимальному выходному току, как для схем стабилизаторов напряжения. Еще одно применение мощного стабилизатора тока — измерение малых сопротивлений с помощью вольтметра по линейной шкале. Действительно, если выставить значение тока, например, 1 А, то, подключив к схеме резистор сопротивлением 3 Ом, по закону Ома получим падение напряжения на нем U=l*R=l А*3 Ом=3 В, а подключив, скажем, резистор сопротивлением 7,5 Ом, получим падение напряжения 7,5 В. Конечно, на таком токе можно измерять только мощные низкоомные резисторы (3 В на 1 А — это 3 Вт, 7,5 В*1 А=7,5 Вт), однако можно уменьшить измеряемый ток и использовать вольтметр с меньшим пределом измерения.

Мощный генератор прямоугольных импульсов.
amp136-12.gifamp136-13.gif

Схемы мощного генератора прямоугольных импульсов показаны на рис.12 (с двухполярным питанием) и рис.13 (с однополярным питанием). Схемы могут быть использованы, например, в устройствах охранной сигнализации. Микросхема включена как триггер Шмитта, а вся схема представляет собой классический релаксационный RC-генератор. Рассмотрим работу схемы, показанной на рис. 12. Допустим, в момент включения питания выходной сигнал ИМС переходит на уровень положительного насыщения (UВЫХ = +UИП). Конденсатор С1 начинает заряжаться через резистор R3 с постоянной времени Cl R3. Когда напряжение на С1 достигнет половины напряжения положительного источника питания (+UИП/2), ИМС DA1 переключится в состояние отрицательного насыщения (UВЫХ = -UИП). Конденсатор С1 начнет разряжаться через резистор R3 с той же постоянной времени Cl R3 до напряжения (-UИП / 2), когда ИМС снова переключится в состояние положительного насыщения. Цикл будет повторяться с периодом 2,2C1R3, независимо от напряжения источника питания. Частоту следования импульсов можно посчитать по формуле:
f=l/2,2*R3Cl. Если сопротивление выразить в килоомах, а емкость в микрофарадах, то частоту получим в килогерцах.

Мощный низкочастотный генератор синусоидальных колебаний.
amp136-14.gif

Электрическая схема мощного низкочастотного генератора синусоидальных колебаний показана на рис.14. Генератор собран по схеме моста Вина, образованного элементами DA1 и С1, R2, С2, R4, обеспечивающими необходимый фазовый сдвиг в цепи ПОС. Коэффициент усиления по напряжению ИМС при одинаковых значениях Cl, C2 и R2, R4 должен быть точно равен 3. При меньшем значении Ку колебания затухают, при большем — резко возрастают искажения выходного сигнала. Коэффициент усиления по напряжению определяется сопротивлением нитей накала ламп ELI, EL2 и резисторов Rl, R3 и равен Ky = R3 / Rl + REL1,2. Лампы ELI, EL2 работают в качестве элементов с переменным сопротивлением в цепи ООС. При увеличении выходного напряжения сопротивление нитей накала ламп за счет нагревания увеличивается, что вызывает уменьшение коэффициента усиления DA1. Таким образом, стабилизируется амплитуда выходного сигнала генератора, и сводятся к минимуму искажения формы синусоидального сигнала. Минимума искажений при максимально возможной амплитуде выходного сигнала добиваются с помощью подстроечного резистора R1. Для исключения влияния нагрузки на частоту и амплитуду выходного сигнала на выходе генератора включена цепь R5C3, Частота генерируемых колебаний может быть определена по формуле:
f=1/2piRC. Генератор может быть использован, например, при ремонте и проверке головок громкоговорителей или акустических систем.

Читайте так же:
Бортовой компьютер в зеркале

В заключение необходимо отметить, что микросхему нужно установить на радиатор с площадью охлаждаемой поверхности не менее 200 см2. При разводке проводников печатной платы для усилителей НЧ необходимо проследить, чтобы «земляные» шины для входного сигнала, а также источника питания и выходного сигнала подводились с разных сторон (проводники к этим клеммам не должны быть продолжением друг друга, а соединяться вместе в виде «звезды»). Это необходимо для минимизации фона переменного тока и устранения возможного самовозбуждения усилителя при выходной мощности, близкой к максимальной.

Усилитель на TDA2030А

Усилитель звуковой частоты, построенный на указанной микросхеме, обладает достойными качествами звучания и простотой сборки. Еще одним дополнительным преимуществом будет низкая стоимость комплектующих элементов, что даст возможность не покупать готовый усилитель, а попробовать собрать его самостоятельно, получив при этом усиленный звук для своих наушников, колонок или сабвуфера.

Схема подключения усилителя на TDA2030A

Рис. 1. Схема подключения усилителя на TDA2030A

Если одного канала вполне достаточно, то можно обойтись схемой, указанной выше. В этом случае понадобится небольшое количество электронных компонентов, монтаж которых можно произвести даже не разводя плату. Питание осуществляется от любого блока питания, желательно трансформаторного, напряжением от 5 до 25 Вольт. Желательно использовать не менее 12 вольт напряжения постоянного тока, ввиду уменьшения качества звучания на высоких громкостях. Радиатор следует использовать как можно больше, если это предусматривает конструкция устройства.

Более же практичным решением будет собрать усилитель двухканальный, с возможностью использования мощности одного канала отдельно или сразу оба. Схема и печатная плата приведены ниже.

Рис. 3. Схема двухканального усилителя

Рис. 4. Печатная плата

Данная мостовая схема также не будет сложной даже для начинающих специалистов или желающих сделать усилитель своими руками.

Отдельное внимание следует уделить напряжению питания этого устройства. Понадобится двухполярное напряжение 18 Вольт. Получить его можно, собрав несложный блок питания по указанной схеме.

Рис. 5. Схема блока питания

Самым сложным элементом будет трансформатор. Его потребуется взять с напряжением на вторичной отмотке не менее 30 Вольт и при этом с отводом от середины. Такие трансформаторы достаточно часто встречаются в отечественной технике, и приобрести их не будет сложностью.

На данном усилителе звука можно добиться 14 Вт мощности на каждый канал, а при установке перемычки все 28 Вт общей мощности усиления звука. Как говорилось ранее, микросхемы следует разместить на мощный радиатор. Желательным будет использование термопасты, которая способствует более быстрому теплоотводу и продлевает срок службы микросхем, а следовательно и всего устройства. В мостовой схеме усилителя на обе микросхемы можно использовать один радиатор.

Рис. 6. Микросхемы и радиатор

Электронные компоненты широко распространены. Допустимо применение аналогов микросхемы TDA2030А. Для тех же, кто не хочет самостоятельно изготавливать печатную плату и закупать по отдельности компоненты, существуют готовые наборы в продаже. О наличии их можно узнать в магазинах электронных компонентов своего региона или купить такой набор на этой микросхеме в Китае. Только параметры и возможности усилителей будут отличаться от указанных.

Мнения читателей
  • Анатолий / 03.12.2018 — 15:06

Привет собрал по такой схеме стерео работает а мостом подключаю нет,играет колонка но еле еле что то далеко далеко, а стерео хорошо играет

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Блок питания на tda2030

Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics пользуется заслуженной популярностью среди радиолюбителей. Она обладает высокими электрическими характеристиками и низкой стоимостью, что позволяет при минимальных затратах собирать на ней высококачественные УНЧ мощностью до 18 Вт. Однако не все знают о ее «скрытых достоинствах»: оказывается, на этой ИМС можно собрать ряд других полезных устройств. Микросхема TDA2030A представляет собой 18 Вт Hi-Fi усилитель мощности класса АВ или драйвер для УНЧ мощностью до 35 Вт (с мощными внешними транзисторами). Она обеспечивает большой выходной ток, имеет малые гармонические и интермодуляционные искажения, широкую полосу частот усиливаемого сигнала, очень малый уровень собственных шумов, встроенную защиту от короткого замыкания выхода, автоматическую систему ограничения рассеиваемой мощности, удерживающую рабочую точку выходных транзисторов ИМС в безопасной области. Встроенная термозащита обеспечивает выключение ИМС при нагреве кристалла выше 145°С. Микросхема выполнена в корпусе Pentawatt и имеет 5 выводов. Вначале вкратце рассмотрим несколько схем стандартного применения ИМС — усилителей НЧ. Типовая схема включения TDA2030A показана на рис.1.

Микросхема включена по схеме неинвертирующего усилителя. Коэффициент усиления определяется соотношением сопротивлений резисторов R2 и R3, образующих цепь ООС. Вычисляется он по формуле Gv=1+R3/R2 и может быть легко изменен подбором сопротивления одного из резисторов. Обычно это делают с помощью резистора R2. Как видно из формулы, уменьшение сопротивления этого резистора вызовет увеличение коэффициента усиления (чувствительности) УНЧ. Емкость конденсатора С2 выбирают исходя из того, чтобы его емкостное сопротивление Хс=1 /2?fС на низшей рабочей частоте было меньше R2 по крайней мере в 5 раз. В данном случае на частоте 40 Гц Хс 2 =1/6,28*40*47*10 -6 =85 Ом. Входное сопротивление определяется резистором R1. В качестве VD1, VD2 можно применить любые кремниевые диоды с током I ПР 0,5. 1 А и U ОБР более 100 В, например КД209, КД226, 1N4007. Схема включения ИМС в случае использования однополярного источника питания показана на рис.2 .

Делитель R1R2 и резистор R3 образуют цепь смещения для получения на выходе ИМС (вывод 4) напряжения, равного половине питающего. Это необходимо для симметричного усиления обеих полуволн входного сигнала. Параметры этой схемы при Vs=+36 В соответствуют параметрам схемы, показанной на рис.1, при питании от источника ±18 В. Пример использования микросхемы в качестве драйвера для УНЧ с мощными внешними транзисторами показан на рис.3 .

При Vs=±18 В на нагрузке 4 Ом усилитель развивает мощность 35 Вт. В цепи питания ИМС включены резисторы R3 и R4, падение напряжения на которых является открывающим для транзисторов VT1 и VT2 соответственно. При малой выходной мощности (входном напряжении) ток, потребляемый ИМС, невелик, и падения напряжения на резисторах R3 и R4 недостаточно для открывания транзисторов VT1 и VT2. Работают внутренние транзисторы микросхемы. По мере роста входного напряжения увеличивается выходная мощность и потребляемый ИМС ток. При достижении им величины 0,3. 0,4 А падение напряжения на резисторах R3 и R4 составит 0,45. 0,6 В. Начнут открываться транзисторы VT1 и VT2, при этом они окажутся включенными параллельно внутренним транзисторам ИМС. Возрастет ток, отдаваемый в нагрузку, и соответственно увеличится выходная мощность. В качестве VT1 и VT2 можно применить любую пару комплементарных транзисторов соответствующей мощности, например КТ818, КТ819. Мостовая схема включения ИМС показана на рис.4.

Читайте так же:
Блок питания для компьютера fsp

Сигнал с выхода ИМС DA1 подается через делитель R6R8 на инвертирующий вход DA2, что обеспечивает работу микросхем в противофазе. При этом возрастает напряжение на нагрузке, и, как следствие, увеличивается выходная мощность. При Vs=±16 В на нагрузке 4 Ом выходная мощность достигает 32 Вт. Для любителей двух-, трехполосных УНЧ данная ИМС — идеальный вариант, ведь непосредственно на ней можно собирать активные ФНЧ и ФВЧ. Схема трехполосного УНЧ показана на рис.5.

Низкочастотный канал (НЧ) выполнен по схеме с мощными выходными транзисторами. На входе ИМС DA1 включен ФНЧ R3C4, R4C5, причем первое звено ФНЧ R3C4 включено в цепь ООС усилителя. Такое схемное решение позволяет простыми средствами (без увеличения числа звеньев) получать достаточно высокую крутизну спада АЧХ фильтра. Среднечастотный (СЧ) и высокочастотный (ВЧ) каналы усилителя собраны по типовой схеме на ИМС DA2 и DA3 соответственно. На входе СЧ канала включены ФВЧ C12R13, C13R14 и ФНЧ R11C14, R12C15, которые вместе обеспечивают полосу пропускания 300. 5000 Гц. Фильтр ВЧ канала собран на элементах C20R19, C21R20. Частоту среза каждого звена ФНЧ или ФВЧ можно вычислить по формуле fСР=160/RC, где частота f выражена в герцах, R — в килоомах, С — в микрофарадах. Приведенные примеры не исчерпывают возможностей применения ИMC TDA2030A в качестве усилителей НЧ. Так, например, вместо двухполярного питания микросхемы (рис.3,4) можно использовать однополярное питание. Для этого минус источника питания следует заземлить, на неинвертирующий (вывод 1) вход подать смещение, как показано на рис.2 (элементы R1-R3 и С2). Наконец, на выходе ИМС между выводом 4 и нагрузкой необходимо включить электролитический конденсатор, а блокировочные конденсаторы по цепи -Vs из схемы исключить.

Рассмотрим другие возможные варианты использования этой микросхемы. ИМС TDA2030A представляет собой не что иное, как операционный усилитель с мощным выходным каскадом и весьма неплохими характеристиками. Основываясь на этом, были спроектированы и опробованы несколько схем нестандартного ее включения. Часть схем была опробована «в живую», на макетной плате, часть — смоделирована в программе Electronic Workbench.

Мощный повторитель сигнала.

Сигнал на выходе устройства рис.6 повторяет по форме и амплитуде входной, но имеет большую мощность, т.е. схема может работать на низкоомную нагрузку. Повторитель может быть использован, например, для умощнения источников питания, увеличения выходной мощности низкочастотных генераторов (чтобы можно было непосредственно испытывать головки громкоговорителей или акустические системы). Полоса рабочих частот повторителя линейна от постоянного тока до 0,5. 1 МГц, что более чем достаточно для генератора НЧ.

Умощнение источников питания.

Микросхема включена как повторитель сигнала, выходное напряжение (вывод 4) равно входному (вывод 1), а выходной ток может достигать значения 3,5 А. Благодаря встроенной защите схема не боится коротких замыканий в нагрузке. Стабильность выходного напряжения определяется стабильностью опорного, т.е. стабилитрона VD1 рис.7 и интегрального стабилизатора DA1 рис.8 . Естественно, по схемам, показанным на рис.7 и рис.8, можно собрать стабилизаторы и на другое напряжение, нужно лишь учитывать, что суммарная (полная) мощность, рассеиваемая микросхемой, не должна превышать 20 Вт. Например, нужно построить стабилизатор на 12 В и ток 3 А. В наличии есть готовый источник питания (трансформатор, выпрямитель и фильтрующий конденсатор), который выдает U ИП = 22 В при необходимом токе нагрузки. Тогда на микросхеме происходит падение напряжения U ИМС = U ИП — U ВЫХ = 22 В -12 В = 10В, и при токе нагрузки 3 А рассеиваемая мощность достигнет величины Р РАС = U ИМС *I Н = 10В*3А = 30 Вт, что превышает максимально допустимое значение для TDA2030A. Максимально допустимое падение напряжения на ИМС может быть рассчитано по формуле:
U ИМС = Р РАС.МАХ / I Н . В нашем примере U ИМС = 20 Вт / 3 А = 6,6 В, следовательно максимальное напряжение выпрямителя должно составлять U ИП = U ВЫХ +U ИМС = 12В + 6,6 В =18,6 В. В трансформаторе количество витков вторичной обмотки придется уменьшить. Сопротивление балластного резистора R1 в схеме, показанной на рис.7, можно посчитать по формуле:
R1 = ( U ИП — U СТ )/I СТ , где U СТ и I СТ — соответственно напряжение и ток стабилизации стабилитрона. Пределы тока стабилизации можно узнать из справочника, на практике для маломощных стабилитронов его выбирают в пределах 7. 15 мА (обычно 10 мА). Если ток в вышеприведенной формуле выразить в миллиамперах, то величину сопротивления получим в килоомах.

Простой лабораторный блок питания.

Электрическая схема блока питания показана на рис.9 . Изменяя напряжение на входе ИМС с помощью потенциометра R1, получают плавно регулируемое выходное напряжение. Максимальный ток, отдаваемый микросхемой, зависит от выходного напряжения и ограничен все той же максимальной рассеиваемой мощностью на ИМС. Рассчитать его можно по формуле:
I МАХ = Р РАС.МАХ / U ИМС
Например, если на выходе выставлено напряжение U ВЫХ = 6 В, на микросхеме происходит падение напряжения U ИМС = U ИП — U ВЫХ = 36 В — 6 В = 30 В, следовательно, максимальный ток составит I МАХ = 20 Вт / 30 В = 0,66 А. При U ВЫХ = 30 В максимальный ток может достигать максимума в 3,5 А, так как падение напряжения на ИМС незначительно (6 В).

Стабилизированный лабораторный блок питания.

Электрическая схема блока питания показана на рис.10 . Источник стабилизированного опорного напряжения — микросхема DA1 — питается от параметрического стабилизатора на 15 В, собранного на стабилитроне VD1 и резисторе R1. Если ИМС DA1 питать непосредственно от источника +36 В, она может выйти из строя (максимальное входное напряжение для ИМС 7805 составляет 35 В). ИМС DA2 включена по схеме неинвертирующего усилителя, коэффициент усиления которого определяется как 1+R4/R2 и равен 6. Следовательно, выходное напряжение при регулировке потенциометром R3 может принимать значение практически от нуля до 5 В * 6=30 В. Что касается максимального выходного тока, для этой схемы справедливо все вышесказанное для простого лабораторного блока питания (рис.9). Если предполагается меньшее регулируемое выходное напряжение (например, от 0 до 20 В при U ИП = 24 В), элементы VD1, С1 из схемы можно исключить, а вместо R1 установить перемычку. При необходимости максимальное выходное напряжение можно изменить подбором сопротивления резистора R2 или R4.

Регулируемый источник тока.

Электрическая схема стабилизатора показана на рис.11 . На инвертирующем входе ИМС DA2 (вывод 2), благодаря наличию ООС через сопротивление нагрузки, поддерживается напряжение U BX . Под действием этого напряжения через нагрузку протекает ток I Н = U BX / R4. Как видно из формулы, ток нагрузки не зависит от сопротивления нагрузки (разумеется, до определенных пределов, обусловленных конечным напряжением питания ИМС). Следовательно, изменяя U BX от нуля до 5 В с помощью потенциометра R1, при фиксированном значении сопротивления R4=10 Ом, можно регулировать ток через нагрузку в пределах 0. 0,5 А. Данное устройство может быть использовано для зарядки аккумуляторов и гальванических элементов. Зарядный ток стабилен на протяжении всего цикла зарядки и не зависит от степени разряженности аккумулятора или от нестабильности питающей сети. Максимальный зарядный ток, выставляемый с помощью потенциометра R1, можно изменить, увеличивая или уменьшая сопротивление резистора R4. Например, при R4=20 Ом он имеет значение 250 мА, а при R4=2 Ом достигает 2,5 А (см. формулу выше). Для данной схемы справедливы ограничения по максимальному выходному току, как для схем стабилизаторов напряжения. Еще одно применение мощного стабилизатора тока — измерение малых сопротивлений с помощью вольтметра по линейной шкале. Действительно, если выставить значение тока, например, 1 А, то, подключив к схеме резистор сопротивлением 3 Ом, по закону Ома получим падение напряжения на нем U=l*R=l А*3 Ом=3 В, а подключив, скажем, резистор сопротивлением 7,5 Ом, получим падение напряжения 7,5 В. Конечно, на таком токе можно измерять только мощные низкоомные резисторы (3 В на 1 А — это 3 Вт, 7,5 В*1 А=7,5 Вт), однако можно уменьшить измеряемый ток и использовать вольтметр с меньшим пределом измерения.

Читайте так же:
Для чего нужен компьютер в офисе

Мощный генератор прямоугольных импульсов.

Схемы мощного генератора прямоугольных импульсов показаны на рис.12 (с двухполярным питанием) и рис.13 (с однополярным питанием). Схемы могут быть использованы, например, в устройствах охранной сигнализации. Микросхема включена как триггер Шмитта, а вся схема представляет собой классический релаксационный RC-генератор. Рассмотрим работу схемы, показанной на рис. 12. Допустим, в момент включения питания выходной сигнал ИМС переходит на уровень положительного насыщения (U ВЫХ = +U ИП ). Конденсатор С1 начинает заряжаться через резистор R3 с постоянной времени Cl R3. Когда напряжение на С1 достигнет половины напряжения положительного источника питания (+U ИП /2), ИМС DA1 переключится в состояние отрицательного насыщения (U ВЫХ = -U ИП ). Конденсатор С1 начнет разряжаться через резистор R3 с той же постоянной времени Cl R3 до напряжения (-U ИП / 2), когда ИМС снова переключится в состояние положительного насыщения. Цикл будет повторяться с периодом 2,2C1R3, независимо от напряжения источника питания. Частоту следования импульсов можно посчитать по формуле:
f=l/2,2*R3Cl. Если сопротивление выразить в килоомах, а емкость в микрофарадах, то частоту получим в килогерцах.

Мощный низкочастотный генератор синусоидальных колебаний.

Электрическая схема мощного низкочастотного генератора синусоидальных колебаний показана на рис.14. Генератор собран по схеме моста Вина, образованного элементами DA1 и С1, R2, С2, R4, обеспечивающими необходимый фазовый сдвиг в цепи ПОС. Коэффициент усиления по напряжению ИМС при одинаковых значениях Cl, C2 и R2, R4 должен быть точно равен 3. При меньшем значении Ку колебания затухают, при большем — резко возрастают искажения выходного сигнала. Коэффициент усиления по напряжению определяется сопротивлением нитей накала ламп ELI, EL2 и резисторов Rl, R3 и равен Ky = R3 / Rl + R EL1,2 . Лампы ELI, EL2 работают в качестве элементов с переменным сопротивлением в цепи ООС. При увеличении выходного напряжения сопротивление нитей накала ламп за счет нагревания увеличивается, что вызывает уменьшение коэффициента усиления DA1. Таким образом, стабилизируется амплитуда выходного сигнала генератора, и сводятся к минимуму искажения формы синусоидального сигнала. Минимума искажений при максимально возможной амплитуде выходного сигнала добиваются с помощью подстроечного резистора R1. Для исключения влияния нагрузки на частоту и амплитуду выходного сигнала на выходе генератора включена цепь R5C3, Частота генерируемых колебаний может быть определена по формуле:
f=1/2piRC. Генератор может быть использован, например, при ремонте и проверке головок громкоговорителей или акустических систем.

В заключение необходимо отметить, что микросхему нужно установить на радиатор с площадью охлаждаемой поверхности не менее 200 см 2 . При разводке проводников печатной платы для усилителей НЧ необходимо проследить, чтобы «земляные» шины для входного сигнала, а также источника питания и выходного сигнала подводились с разных сторон (проводники к этим клеммам не должны быть продолжением друг друга, а соединяться вместе в виде «звезды»). Это необходимо для минимизации фона переменного тока и устранения возможного самовозбуждения усилителя при выходной мощности, близкой к максимальной.

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A

Моя цель была создать усилитель, не тратя на него больших денег. Все детали кроме корпуса я нашел в различных старых платах, не нужных естественно.

Собирать усилитель на TDA2030 можно разными методами и решениями, в данном случае я буду использовать навесной монтаж. Так как множество выводов соединены с землей, я рекомендую сделать разветвляющийся провод.

Усилитель звука на микросхеме TDA2030A своими руками

Далее приступаем к пайке соединений.

Отсчет выводов микросхемы ведется слева на право, при этом маркировка и выводы направленные на вас.

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A своими руками

После того, как вы собрали схему — проверяем ее. Подключим динамик и на небольшой громкости проверим усилитель.

Усилитель звука на микросхеме TDA2030A своими руками

Если все работает, приступаем к следующему этапу.

У меня имелся готовый корпус. Радиатор лучше вывести наружу для более лучшего охлаждения его поверхности. Иначе в корпусе может случиться перегрев.

Прикрепите радиатор, разъемы, выведите провода питания, установите на — питания выключатель.

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель имеет следующие характеристики:

  • Напряжения питания — от ±4.5 до ±25 В.
  • Выходная мощность — 18 Вт.
  • Номинальный частотный диапазон — 20-80.000 Гц.

Почти все подобные микросхемы очень сильно греются и поэтому без радиатора долго не проработают.

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A своими руками

Усилитель звука на микросхеме TDA2030A своими руками

Это поистине невероятной простоты схема, которую под силу собрать даже начинающим радиолюбителям. При всем при этом обладает достойными характеристиками для своего минимального размера.

Чем можно заменить микросхему tda2030a: Можно ли заменить микросхему TDA2050 на TDA2030 – TDA2030A характеристики, DataSheet, аналоги, цоколевка

Для большинства начинающих радиолюбителей при выборе схемы усилителя низкой частоты, требование к ней двухполярного источника питания, становится причиной для выбора другой схемы. Связано это со сложностью постройки источника, либо дефицитом трансформатора с двумя вторичными обмотками.

В этой статье представлена схема усилителя НЧ на интегральном усилителе TDA2030a, которая питается от однополярного источника питания, что позволяет без труда повторить схему новичку.

Вместо TDA2030a можно применить TDA2030, но тогда необходимо понизить напряжение питание (максимальное +36В). Разная форма выводов у этих микросхем является конструктивным отличием.

Основные характеристики усилителя TDA2030a

Напряжение питания …….. +12..+44В

Сопротивление нагрузки ……… 4Ома

Выходная мощность (THD=0.5%, Rout=4Ома):

При эксплуатации УНЧ на нагрузку 8Ом, с однополярным источником, напряжение питания можно поднять до+40В, а при нагрузке 4Ома напряжение не рекомендуется поднимать выше +36В.

Подробные характеристики и графики смотрите в Datasheet.

Схема усилителя на TDA2030a

Резисторы могут быть мощностью 0.25Вт и более. Конденсаторы C4 и C7 пленочные. Диоды VD1 и VD2 можно заменить на любые выпрямительные диоды с током от 1А и с максимальным обратным напряжением 50В и более (1n4007,1n5408 и другие).

Читайте так же:
Дешевая клавиатура для игр

Конструктивно УНЧ собран на односторонней печатной плате. После её монтажа необходимо тщательно смыть остатки флюса, и проверить дорожки платы и выводы микросхемы на предмет короткого замыкания.

К микросхеме через теплопроводящую пасту необходимо установить радиатор охлаждения с площадью поверхности 180см2 и больше.

При тестировании усилитель запускался при +8В и звучал неплохо на 25% уровня громкости. При напряжении +20В и менее усилитель начинал значительно искажать сигнал на 90% от уровня громкости. При +24В звук был без слышимых искажений практически на полной громкости. Проверка проводилась на акустической системе сопротивлением 8Ом, а сигнал подавался от ноутбука.

Datasheet на TDA2030a

Печатная плата усилителя на TDA2030a с однополярным питанием

Datasheets

Найдено: 319,834 Вывод: 1-20

Вид: Список / Картинки

  1. FP6277 — Datasheet Feeling Technology

DC/DC преобразователи и контроллеры Feeling Technology FP6277

Высокопроизводительный синхронный повышающий преобразователь частоты с частотой 500 кГц, 7 А FP6277 — это DC-DC преобразователь с токовым режимом и управлением PWM / PSM. Его схема ШИМ со встроенным переключателем на стороне высокого уровня 30 мОм …

DC/DC преобразователи и контроллеры Feeling Technology FP6277 FP6277XR-G1

Высокопроизводительный синхронный повышающий преобразователь частоты с частотой 500 кГц, 7 А FP6277 — это DC-DC преобразователь с токовым режимом и управлением PWM / PSM. Его схема ШИМ со встроенным переключателем на стороне высокого уровня 30 мОм …

Полевые транзисторные сборки и модули Fortune Semiconductor FS8205

Сдвоенный N-канальный мощный MOSFET, работающий в режиме обогащения В современных мощных полевых МОП-транзисторах использовались передовые технологии обработки для достижения чрезвычайно эффективного и экономичного устройства с низким …

ИС защиты аккумуляторов Fortune Semiconductor DW01A

ИС для защиты одноэлементной литий-ионной / полимерной батареи

ИС защиты аккумуляторов Fortune Semiconductor DW01A DW01A-G

ИС для защиты одноэлементной литий-ионной / полимерной батареи

ИС управления зарядом аккумуляторов Top Power ASIC TP4056

Автономное линейное литий-ионное зарядное устройство с терморегуляцией в SOP-8

ИС управления зарядом аккумуляторов Top Power ASIC TP4056 TP4056-42-SOP8-PP

Автономное линейное литий-ионное зарядное устройство с терморегуляцией в SOP-8

Диоды выпрямительные NXP BYD17

Универсальные управляемые лавинные выпрямители

Диоды выпрямительные NXP BYD17 BYD17M

Универсальные управляемые лавинные выпрямители

Диоды выпрямительные NXP BYD17 BYD17K

Универсальные управляемые лавинные выпрямители

Диоды выпрямительные NXP BYD17 BYD17J

Универсальные управляемые лавинные выпрямители

Диоды выпрямительные NXP BYD17 BYD17G

Универсальные управляемые лавинные выпрямители

Диоды выпрямительные NXP BYD17 BYD17D

Универсальные управляемые лавинные выпрямители

Линейные регуляторы напряжения Infineon TLE7272-2D

TLE7272-2 — это монолитный встроенный регулятор с низким падением напряжения для токов нагрузки до 300 мА. Входное напряжение до 42 В регулируется до V Q, ном = 5,0 В с точностью ± 2%. Благодаря встроенной схеме сброса, показывающей время включения …

Линейные регуляторы напряжения Infineon TLE7272-2D TLE72722DATMA1

TLE7272-2 — это монолитный встроенный регулятор с низким падением напряжения для токов нагрузки до 300 мА. Входное напряжение до 42 В регулируется до V Q, ном = 5,0 В с точностью ± 2%. Благодаря встроенной схеме сброса, показывающей время включения …

Линейные регуляторы напряжения Infineon TLE7272-2E

TLE7272-2 — это монолитный встроенный регулятор с низким падением напряжения для токов нагрузки до 300 мА. Входное напряжение до 42 В регулируется до V Q, ном = 5,0 В с точностью ± 2%. Благодаря встроенной схеме сброса, показывающей время включения …

Линейные регуляторы напряжения Infineon TLE7272-2E TLE72722EXUMA1

TLE7272-2 — это монолитный встроенный регулятор с низким падением напряжения для токов нагрузки до 300 мА. Входное напряжение до 42 В регулируется до V Q, ном = 5,0 В с точностью ± 2%. Благодаря встроенной схеме сброса, показывающей время включения …

Изолирующие усилители Renesas RV1S9353A

Оптически изолированный дельта-сигма-модулятор Фотопары (оптопары) с цифровым выходом усилителя изоляции представляют собой оптически связанные усилители изоляции, в которых используется ИС с высокоточным сигма-дельта-аналого-цифровым …

Изолирующие усилители Renesas RV1S9353A RV1S9353ACCSP-120C#KC0

Оптически изолированный дельта-сигма-модулятор Фотопары (оптопары) с цифровым выходом усилителя изоляции представляют собой оптически связанные усилители изоляции, в которых используется ИС с высокоточным сигма-дельта-аналого-цифровым …

Изолирующие усилители Renesas RV1S9353A RV1S9353ACCSP-120C#SC0

Оптически изолированный дельта-сигма-модулятор Фотопары (оптопары) с цифровым выходом усилителя изоляции представляют собой оптически связанные усилители изоляции, в которых используется ИС с высокоточным сигма-дельта-аналого-цифровым …

ТДА 2030 с дополнительными транзисторами мощность 35 Вт

ТДА 2030 — это микросхема усилителя низкой частоты TDA2030A, которая считается одной из самых популярных в сообществе радиолюбителей. Данный электронный прибор отличается великолепными электрическими параметрами и, что не маловажно — низкую стоимость. Все эти данные дают возможность без проблем и не тратя больших денежных средств, собрать на ней усилитель низкой частоты с высоким качеством звучания и мощностью 18 Вт.

Кроме доступности и легкости в сборке УНЧ, микросхема TDA2030A обладает рядом скрытых преимуществ, используя которые, можно изготовить множество нужных и хороших приборов. ИМС ТДА 2030 является усилителем мощности звука АВ-класса, либо может служить драйвером для усилителя рассчитанного на мощность 35 Вт, в комплекте с мощными транзисторами в выходном каскаде.

Она в состоянии обеспечить высокий ток в выходном тракте схемы, не имеет серьезных гармонических искажений, работает в широкой полосе частот звукового сигнала. Кроме этого, данная микросхема отличается от других аналогичных приборов незначительными собственными шумами, снабжена защитой от короткого замыкания в нагрузке.

А есть тут люди, которые понимают в радиоэлектронике?

ВИДЕО ПО ТЕМЕ: TDA2030, TDA2050, LM1875 — что лучше?
By traktir , March 3, in Для начинающих. И если да то на сколько уменьшится мощность в ваттах? Мы принимаем формат Sprint-Layout 6! Экспорт в Gerber из Sprint-Layout 6.

Вздутые — не вздутые, все равно перепаяйте. Можете емкость померить, если есть чем.

Микросхема усилитель TDA является достаточно популярной и дешевой микросхемой позволяющей построить качественный усилитель для бытовых нужд. Может работать как от двухполярного, так и однополярного источника питания. Микросхема предназначена для изготовления низкочастотных усилителей звука класса AB. Достоинством является хорошее качество усиления и практически нет переходных искажений. К недостаткам можно отнести не экономичный в плане энергопотребления, отсюда низкий КПД. У данного класса высокий КПД, но вместе с тем и уровень нелинейных искажений выше, по причине несовершенной стыковки обоих полуволн. TDA создает высокий выходной ток и имеет очень низкие гармонические и перекрестные искажения.

Микросхема усилитель TDA является достаточно популярной и дешевой микросхемой позволяющей построить качественный усилитель для бытовых нужд. Может работать как от двухполярного, так и однополярного источника питания. Микросхема предназначена для изготовления низкочастотных усилителей звука класса AB. Достоинством является хорошее качество усиления и практически нет переходных искажений.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector