Parus16.ru

Парус №16
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок питания на 3 вольта схема

Блок питания на 3 вольта схема

Для питания некоторых самоделок требуется постоянное напряжение 3.3 В, но под рукой имеется только стандартнаябатарейка типа АА или ААА на 1.2 — 1.5 В. Тогда можно собрать простые схемы повышающих преобразователей dc dc

Специализированная микросхема MCP1640 обладает велеколепным КПД аж в 96%, способна поддерживать уровень входного напряжения от 0.35 В и более. Выходное напряжение настраивается в интервале от 2.0 В до 5.5 В. На рисунке выше номиналы радио элементов подобраны, для получения постоянного уровня в 3.3 В от типовой батарейки типа АА. Вывод VFB используется для регулировки резистивным делителем. Максимальный выходной ток устройства до 150 мА.

Вариант 2 3.3В на микросборке LTC3400

КПД LTC3400 составляет 92%.Выходное нап-е лежит в интервале от 2.5 В до 5 В и рассчитывается с помощью формулы ниже:

Вывод микросхемы SHDN необходимо соединить с Vin через резистор номиналом 1 МОм. Максимальный ток, который можно получить — 100 мА. Таким образом эти две микросборки почти идеально подойдут для питания большинства ваших микроконтроллерных самоделок, где питание реализовано от стандартных пальчиковых или мизинчиковых батареек.

Надежный и простой в использовании блок питания на 3 и 5 вольта является, пожалуй, одним из самых важных компонентом при работе с микроконтроллером. Данная схема позволяет собрать отличный регулируемый блок питания для микроконтроллера, как на 3 вольта, так и на 5 вольт.

Блок питания 3 вольта основан на специлизированной микросхеме преобразователе типа TPS63000 фирмы Texas Instruments. При этом блок питания обеспечивает регулируемый выход 3.3 вольта / 5.0 В при диапазоне на входе от 1.8 вольта до 5.5 В. с высоким КПД до 96%. В данной схеме можно использовать напряжение питания от USB порта (J1), щелочных, никель-кадмиевых (NiCd), никель-металл-гидридных (NiMH) батареек и аккумуляторов, а также литий-ионного или литий полимерного аккумулятора (через разъем J2) в роли входного напряжения для этого блока питания. Работа микросхемы TPS63000 базируется на контроллере широтно-импульсной модуляции (ШИМ) с применением синхронного выпрямления для получения практически максимально возможного КПД.

В семействе преобразователей TPS6300x имеются версии как с регулируемым выходом, так и с фиксированным. В данном примере мы выбрали регулируемый преобразователь и подсоединили делитель напряжения на резисторах (R2-R4) между выводами VOUT, FB и GND микросборки TPS63000. Если перемычка JP1 разомкнута, то выходное напряжение снимаемое с гнезда J3 составляет 5 вольт. Если J3 замкнута, то на выходе схемы блока будет 3 вольта, точнее 3,3В.

Тонкости монтажа блока питания 3 вольта: входные емкости C1 и C), выходные конденсаторы С3 и С4 и индуктивность (L1) должны быть установлены по возможности как можно ближе к микросборке. Старайтесь задействовать общий узел заземления для третьего и девятого вывода, чтобы миминизировать влияние фонового шума. Открытая тепловая площадка IC1 схемы должна быть подсоединена с PGND, и резистивный делитель обратной связи R2-R4 нужно смонтировать как можно ближе к выводу заземления микросхемы.

Основой схемы универсального блока питания для радиолюбителей является стабилизатор напряжения на микросхема КР142ЕН12. В качестве силового трансформатора применен накальный трансформатор ТН-56, имеющий четыре вторичные обмотки с напряжением 6,3 В. В зависимости от необходимого уровня выходного напряжения, с помощью переключателя SA2 подключаем нужное нам число вторичных обмоток.

На ОУ LM358 выполнен регулируемый стабилизатор напряжения. С вывода переменного сопротивления R2 на его прямой вход следует опорное напряжение, величина которого задается стабилитроном, а на инверсный вход идет потенциал отрицательной ОС с эмиттера второго транзистора через делитель напряжения на сопротивлениях R10 и R7

Блок питания на 3 вольта схема

Инструкция по блокам питания

Прикрепленное изображение

Сообщение отредактировал Мрачный — 27.09.13, 14:29

Что такое — Блок Питания.

Блок питания (англ. power supply unit, PSU) — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электрической энергией постоянного тока, путём преобразования сетевого напряжения до требуемых значений. В некоторой степени блок питания также выполняет функции стабилизации и защиты от незначительных помех питающего напряжения и участвует в охлаждении компонентов персонального компьютера.

Сообщение отредактировал Мрачный — 22.09.13, 14:49

Из чего состоит блок питания.

  • выпрямитель сетевой,
  • генератор,
  • трансформатор,
  • выпрямитель низковольтный,
  • стабилизатор.

Сообщение отредактировал Мрачный — 22.09.13, 14:34

Принцип работы блока питания.

  1. Сетевое напряжение сначала выпрямляется.
  2. Далее заряжает конденсаторы фильтра.
  3. Очищается от помех блоком PFC и преобразуется в синусоиду с частотой 50-150 килогерц.
  4. Далее напряжение понижается до 5 и 12 вольт.

Сообщение отредактировал Мрачный — 22.09.13, 14:34

Комфортные напряжения.

  • Линия +3V — от 3,20 до 3,45 вольта,
  • Линия +5V — от 4,85 до 5,30 вольта
  • Линия +12V — от 11,80 до 12,5 вольта.

Сообщение отредактировал Мрачный — 22.09.13, 14:34

Power Factor Correction (PFC).

Современные блоки становятся все мощнее, а провода в розетках не меняются. Это приводит к возникновению импульсных помех – блок питания тоже не лампочка и потребляет, как и процессор, энергию импульсами. Чем сильнее и неравномернее нагрузка на блок, тем больше помех он выпустит в электросеть.
Для борьбы с этим явлением разработан PFC.
Это мощный дроссель, устанавливаемый после выпрямителя до фильтрующих конденсаторов.
Первое, что он делает, это ограничение тока заряда вышеупомянутых фильтров. При включении в сеть блока без PFC очень часто слышен характерный щелчок – потребляемый ток в первые миллисекунды может в несколько раз превышать паспортный и это приводит к искрению в выключателе. В процессе работы компьютера модуль PFC гасит такие же импульсы от заряда разнообразных конденсаторов внутри компьютера и раскрутки моторов винчестеров.
Встречаются два варианта исполнения модулей – пассивный и активный.
Второй отличается наличием управляющей схемы, связанной с вторичным (низковольтным) каскадом блока питания. Это позволяет быстрее реагировать на помехи и лучше их сглаживать.

Читайте так же:
Вертикальная мышь для компьютера

Сообщение отредактировал Мрачный — 22.09.13, 14:33

Что и по каким линиям питает блок питания.

Блоки питания выдают три базовых напряжения: +3.3, +5 и +12 V.
+3.3 предназначена для питания выходных каскадов системной логики
+5 — питает логику почти всех PCI- и IDE-девайсов
+12 — является базовым напряжением для питания процессора и ядра видеокарты

Сообщение отредактировал Мрачный — 27.09.13, 10:47

VRM, блок регулировки напряжения.

Используется для регулировки напряжения, подаваемого для всех устройств материнской платы. Например, современные процессоры работают на меньшем напряжении, чем остальные компоненты системы. Не для кого не секрет, что новые вычислительные устройства, такие как различные чипы и процессоры, у которых малый размер транзистора, потребляют меньшее питания.
Центральный же процессор работает лучше на высоком напряжении, но хуже при высокой температуре. Выделение тепла процессором — в квадратичной зависимости от уровня напряжения, подаваемого на процессор. Возникает дилемма: при увеличении напряжения процессор должен работать быстрее, но увеличивается его температура, что влечет за собой ухудшение его работы. Излишнее тепло от процессора отводится радиаторами и вентиляторами. Если вольтаж и температура процессора слишком высоки, он может перегреться и сгореть. Именно поэтому разъем для процессора на материнской плате располагают как можно ближе к блоку питания, в котором работает вентилятор на вытяжку. Горячий воздух от процессора (а теперь и с других горячих устройств, таких как видеокарты и некоторые жесткие диски) сразу же вытягивается из корпуса. Некоторые экстремальные оверклокеры настолько разгоняют систему, что появляется необходимость в установке дополнительного вентилятора-вытяжки, место для которого есть уже во всех корпусах.
Для наилучшего соотношения мощности, скорости и напряжения, компания Intel для своих новых процессоров разработала специальный тип регулятора напряжения, который на входе имеет напряжение от блока питания, а на выход подает стабильное напряжение необходимого значения на сам процессор. Кроме того, новый регулятор напряжения — программируемый, который использует 5 VID (voltage identification — определение напряжения) сигналы, с помощью которых регулируется подаваемое на него напряжение. VID контакты, как правило идут прям из процессора. Например, для выполнения особо сложной задачи процессору требуется большая вычислительная мощь. Тогда он посылает запрос на регулятор напряжение, который увеличивает напряжение на то значение, которое "прислал" процессор. Такие возможности очень понравятся оверклокерам, для которых некоторые производители материнских плат разрабатывают применение этой функции.

Блок питания на 3 вольта схема

Импульсные источники питания (ИИП) обычно являются достаточно сложными устройствами, из-за чего начинающие радиолюбители стремятся их избегать. Тем не менее, благодаря распространению специализированных интегральных ШИМ-контроллеров, есть возможность конструировать достаточно простые для понимания и повторения конструкции, обладающие высокими показателями мощности и КПД. Предлагаемый блок питания имеет пиковую мощность около 100 Вт и построен по топологии flyback (обратноходовой преобразователь), а управляющим элементом является микросхема CR6842S (совместимые по выводам аналоги: SG6842J, LD7552 и OB2269).

Внимание! В некоторых случаях для отладки схемы может понадобится осциллограф!

Технические характеристики

Размеры блока: 107х57х30 мм (размеры готового блока с Алиэкспресс, возможны отклонения).
Выходное напряжение: версии на 24 В (3-4 А) и на 12 В (6-8 А).
Мощность: 100 Вт.
Уровень пульсаций: не более 200 мВ.

На Али легко найти множество вариантов готовых блоков по этой схеме, например, по запросам вида «Artillery power supply 24V 3A», «Блок питания XK-2412-24», «Eyewink 24V switching power supply» и тому подобным. На радиолюбительских порталах данную модель уже окрестили «народной», ввиду простоты и надёжности. Схемотехнически варианты 12В и 24В различаются незначительно и имеют идентичную топологию.

Внешний вид импульсного блока питания 100Вт

Обратите внимание! В данной модели БП у китайцев весьма высок процент брака, поэтому при покупке готового изделия перед включением желательно тщательно проверять целостность и полярность всех элементов. В моём случае, например, диод VD2 имел неверную полряность, из-за чего уже после трёх включений блок сгорел и мне пришлось менять контроллер и ключевой транзистор.

Подробно методология проектирования ИИП вообще, и конкретно этой топологии в частности, тут рассматриваться не будет, ввиду слишком большого объёма информации — см. отдельные статьи.

Далее подробно разберём назначение элементов в схеме.

Импульсный блок питания 100Вт
Импульсный блок питания мощностью 100Вт на контроллере CR6842S.

Назначение элементов входной цепи

Рассматривать схему блока будем слева-направо:

F1Обычный плавкий предохранитель.
5D-9Терморезистор, ограничивает бросок тока при включении блока питания в сеть. При комнатной температуре имеет небольшое сопротивление, ограничивающее броски тока, при протекании тока разогревается, что вызывает снижение сопротивления, поэтому в дальнейшем не влияет на работу устройства.
C1Входной конденсатор, для подавления несимметричной помехи. Ёмкость допустимо немного увеличить, желательно чтобы он был помехоподавляющим конденсатором типа X2 или имел большой (10-20 раз) запас по рабочему напряжению. Для надёжного подавления помех должен иметь низкие ESR И ESL.
L1Синфазный фильтр, для подавления симметричной помехи. Состоит из двух катушек индуктивности с одинаковым числом витков, намотанных на общем сердечнике и включенных синфазно.
KBP307Выпрямительный диодный мост.
R5, R9Цепочка, необходимая для запуска CR6842. Через неё осуществляется первичный заряд конденсатора C4 до 16.5В. Цепь должна обеспечивать ток запуска не менее 30 мкА (максимум, согласно даташиту) во всём диапазоне входных напряжений. Также, в процессе работы посредством этой цепочки осуществляется контроль входного напряжения и компенсация напряжения при котором закрывается ключ — увеличение тока, втекающего в третий пин, вызывает понижение порогового напряжения закрытия ключа.
R10Времязадающий резистор для ШИМ. Увеличение номинала данного резистора уменьшит частоту переключения. Номинал должен лежать в пределах 16-36 кОм.
C2Сглаживающий конденсатор.
R3, C7, VD2Снабберная цепь, защищающая ключевой транзистор от обратных выбросов с первичной обмотки трансформатора. R3 желательно использовать мощностью не менее 1Вт.
C3Конденсатор, шунтирующий межобмоточную ёмкость. В идеале должен быть Y-типа, либо же должен иметь большой запас (15-20 раз) по рабочему (сетевому!) напряжению. Служит для уменьшения помех. Номинал зависит от параметров трансформатора, делать слишком большим нежелательно.
R6, VD1, C4Данная цепь, запитываясь от вспомогательной обмотки трансформатора образует цепь питания контроллера. Также данная цепь влияет на цикл работы ключа. Работает это следующим образом: для корректной работы напряжение на седьмом выводе контроллера должно находиться в пределах 12.5 — 16.5 В. Напряжение 16.5В на этом выводе является порогом, при котором происходит открытие ключевого транзистора и энергия начинает запасаться в сердечнике трансформатора (в это время микросхема питается от C4). При понижении ниже 12.5В микросхема отключается, таким образом конденсатор C4 должен обеспечивать питание контроллера пока из вспомогательной обмотки не поступает энергии, поэтому его номинала должно быть достаточно чтобы удерживать напряжение выше 12.5В пока ключ открыт. Нижний предел номинала C4 следует рассчитывать исходя из потребления контроллера около 5 мА. От времени заряда данного конденсатора до 16.5В зависит время закрытого ключа и определяется оно током, который может отдать вспомогательная обмотка, при этом ток ограничивается резистором R6. Кроме всего прочего, посредством данной цепи в контроллере предусмотрена защита от перенапряжения в случае выхода из строя цепей обратной связи — при превышении напряжения выше 25В контроллер отключится и не начнёт работать пока питание с седьмого пина не будет снято.
R13Ограничивает ток заряда затвора ключевого транзистора, а также обеспечивает его плавное открытие.
VD3Защита затвора транзистора.
R8Подтяжка затвора к земле, выполняет несколько функций. Например, в случае отключения контроллера и повреждения внутренней подтяжки данный резистор обеспечит быстрый разряд затвора транзистора. Также, при корректной разводке платы обеспечит более короткий путь тока разряда затвора на землю, что должно положительно сказаться на помехозащищённости.
BT1Ключевой транзистор. Устанавливается на радиатор через изолирующую прокладку.
R7, C6Цепь служит для сглаживания колебаний напряжения на токоизмерительном резисторе.
R1Токоизмерительный резистор. Когда напряжение на нём превышает 0.8В контроллер закрывает ключевой транзистор, таким образом регулируется время открытого ключа. Кроме того, как уже говорилось выше, напряжение при котором будет закрыт транзистор также зависит от входного напряжения.
C8Фильтрующий конденсатор оптопары обратной связи. Допустимо немного увеличить номинал.
PC817Опторазвязка цепи обратной связи. Если транзистор оптопары закроется это вызовет повышение напряжения на втором выводе контроллера. Если напряжение на втором выводе будет превышать 5.2В дольше 56 мс, это вызовет закрытие ключевого транзистора. Таким образом реализована защита от перегрузки и короткого замыкания.
Читайте так же:
Есть ли whatsapp на компьютер

В данной схеме 5-й вывод контроллера не используется. Однако, согласно даташиту на контроллер, на него можно повесить NTC-термистор, который обеспечит отключение контроллера в случае перегрева. Стабилизированный выходной ток данного вывода — 70 мкА. Напряжение срабатывания температурной защиты 1.05В (защита включится при достижении сопротивления 15 кОм). Рекомендуемый номинал термистора 26 кОм (при 27°C).

Параметры импульсного трансформатора

Поскольку импульсный трансформатор это один из самых сложных в проектировании элементов импульсного блока, расчёт трансформатора для каждой конкретной топологии блока требует отдельной статьи, поэтому подробного описания методологии тут не будет, тем не менее для повторения описываемой конструкции следует указать основные параметры используемого трансформатора.

Следует помнить, что одно из важнейших правил при проектировании — соответствие габаритной мощности трансформатора и выходной мощности блока питания, поэтому первым делом, в любом случае, выбирайте подходящие вашей задаче сердечники.

Чаще всего данная конструкция поставляется с трансформаторами, выполненными на сердечниках типа EE25 или EE16, либо аналогичных. Собрать достаточно информации по количеству витков в данной модели ИИП не удалось, поскольку в разных модификациях, несмотря на схожие схемы, используются различные сердечники.

Увеличение разницы в количестве витков ведёт к уменьшению потерь на переключение ключевого транзистора, но повышает требования к его нагрузочной способности по максимальному напряжению сток-исток (VDS).

Для примера, будем ориентироваться на стандартные сердечники типа EE25 и значение максимальной индукции Bmax = 300 мТ. В этом случае соотношение витков первой-второй-третьей обмотки будет равно 90:15:12.

Следует помнить, что указанное соотношение витков не является оптимальным и возможно потребуется корректировка соотношений по результатам испытаний.

Первичную обмотку следует наматывать проводником не тоньше 0.3мм в диаметре. Вторичную обмотку желательно выполнять сдвоенным проводом диаметром 1мм. Через вспомогательную третью обмотку течёт малый ток, поэтому провода диаметром 0.2мм будет вполне достаточно.

Описание элементов выходной цепи

Далее кратко рассмотрим выходную цепь источника питания. Она, в общем-то, совершенно стандартна, от сотен других отличается минимально. Интересна может быть лишь цепочка обратной связи на TL431, но её мы тут подробно рассматривать не будем, потому что про цепи обратной связи есть отдельная статья.

VD4Сдвоенный выпрямительный диод. В идеале подбирать с запасом по напряжениютоку и с минимальным падением. Устанавливается на радиатор через изолирующую прокладку.
R2, C12Снабберная цепь для облегчения режима работы диода. R2 желательно использовать мощностью не менее 1Вт.
C13, L2, C14Выходной фильтр.
C20Керамический конденсатор, шунтирующий выходной конденсатор C14 по ВЧ.
R17Нагрузочный резистор, обеспечивающий нагрузку для холостого хода. Также через него разряжаются выходные конденсаторы в случае запуска и последующего отключения без нагрузки.
R16Токоограничивающий резистор для светодиода.
C9, R20, R18, R19, TLE431, PC817Цепь обратной связи на прецизионном источнике питания. Резисторы задают режим работы TLE431, а PC817 обеспечивает гальваническую развязку.
Читайте так же:
Блок питания hiper m650

Что можно улучшить

Вышеописанная схема обычно поставляется в готовом виде, но, если собирать схему самому, ничто не мешает немного улучшить конструкцию. Модифицировать можно как входные, так и выходные цепи.

Если в ваших розетках земляной провод имеет соединение с качественной землёй (а не просто ни к чему не подключен, как это часто бывает), можно добавить два дополнительных Y-конденсатора, соединённых каждый со своим сетевым проводом и землёй, между L1 и входным конденсатором C1. Это обеспечит симметрирование потенциалов сетевых проводов относительно корпуса и лучшее подавление синфазной составляющей помехи. Вместе с входным конденсатором два дополнительных конденсатора образуют т.н. «защитный треугольник».

После L1 также стоит добавить ещё один конденсатор X-типа, с той же ёмкостью что у C1.

Для защиты от импульсных бросков напряжения большой амплитуды целесообразно параллельно входу подключать варистор (например 14D471K). Также, если у вас есть земля, для защиты в случае аварии на линии электроснабжения, при которой вместо фазы и нуля фаза попадаётся на оба провода, желательно составить защитный треугольник из таких же варисторов.

Защитный треугольник на варисторах
Защитный треугольник на варисторах.

При повышении напряжения выше рабочего, варистор снижает своё сопротивление и ток течёт через него. Однако, ввиду относительно низкого быстродействия варисторов, они не способны шунтировать скачки напряжения с быстро нарастающим фронтом, поэтому для дополнительной фильтрации быстрых скачков напряжения желательно параллельно входу подключать также двунаправленный TVS-супрессор (например, 1.5KE400CA).

Опять же, при наличии земляного провода, желательно добавить на выход блока ещё два Y-конденсатора небольшой ёмкости, включенных по схеме «защитного треугольника» параллельно с C14.

Для быстрой разрядки конденсаторов при отключении устройства параллельно входным цепям целесообразно добавить мегаомный резистор.

Каждый электролитический конденсатор желательно зашунтировать по ВЧ керамикой малой ёмкости, расположенной максимально близко к выводам конденсатора.

Ограничительный TVS-диод будет не лишним поставить также и на выход — для защиты нагрузки от возможных перенапряжений в случае проблем с блоком. Для 24В версии подойдёт, например 1.5KE24A.

Лабораторный блок питания на транзисторах

Лабораторный блок питания (ЛБП), представленный в этой статье, имеет простую, но в то же время надежную и хорошо повторяемую схему. В качестве основных компонентов устройства используются биполярные транзисторы. ЛБП может служить для: тестирования силовых транзисторов, питания светодиодов (LED-панелей), зарядки различных типов аккумуляторов, питания электронных устройств напряжением 0–40В и током до 2,5А.

В качестве защиты от короткого замыкания лабораторного блока питания используется стабилизация выходного тока. Порог максимального тока можно установить с помощью подстроечного резистора в пределе 0,5–2,5А. Регулировка тока нагрузки в процессе эксплуатации выполняется от нуля до установленного порога с помощью переменного резистора.

Верхний предел выходного напряжения также может быть установлен с помощью подстроечного резистора в диапазоне 10–40В. Регулировка выходного напряжения в процессе эксплуатации осуществляется переменным резистором от нуля до установленного порога.

ЛБП на транзисторах

Схема лабораторного блока питания на транзисторах

Схема ЛБП надежная и имеет хорошую повторяемость, взята она из журнала Elektor Electronics №4 1999 года. Оригинал этой статьи можно скачать в формате PDF, ссылка под данной статьей.

Схема лабораторного блока питания на транзисторах

На схеме присутствует только блок самого стабилизатора. Отсутствие выпрямителя обусловлено неопределенностью номиналов компонентов исходя из конкретных параметров лабораторного блока питания.

Транзисторы T5 и T6 образуют дифференциальный усилитель, который сравнивает часть опорного напряжения с напряжением на выходе ЛБП. Опорное напряжение образует параметрический стабилизатор R7D2D3. Часть его отбирается переменным резистором P1. Выходное значение напряжения берется с делителя P4R5.

Когда Uвых ЛБП возрастает, то и на делителе P4R5 падение напряжения увеличивается. Когда значение на делителе станет больше чем установленное потенциометром P1, то транзистор T5 прикроется больше чем T6 и на резисторе R2 падение увеличится. Вследствие чего транзистор T4 откроется и подтянет базу T3 к общему проводу (Gnd). Транзисторы T3, T4 и силовой регулирующий транзистор T1 прикроются, уменьшив выходное напряжение лабораторного блока питания, до тех пор, пока значения на базах (T5 и T6) дифференциального усилителя не станут равными.

Транзистор T7 отвечает за стабилизацию тока. Его датчиком является резистор R4, через который протекает весть ток нагрузки. При возрастании тока на датчике R4, а, следовательно, и на цепи P3R6P2 падение напряжения также повысится. Это падение через токоограничивающий резистор R8 попадает на базу T7. При достижении определенного значения транзистор T7 открывается и подтягивает базу T3 через резистор R2 к общему проводу (Gnd) и на выходе эмиттерного повторителя напряжение начнет снижаться. Так работает стабилизация тока.

Максимальный (предельно возможный) ток ЛБП устанавливается подстроечным резистором P3. При P3=0, максимальный выходной ток составит 2,5А, а при P3=250кОм максимальное значение составит 500мА.

Регулировка тока нагрузки ЛБП выполняется вращением движка потенциометра P2.

Максимальное (предельное) напряжение на выходе ЛБП устанавливается подстроечным резистором P4. При P4=0 максимальное Uout=10В, а при P4=25кОм Uout=40В.

Регулировка выходного напряжения осуществляется потенциометром P1.

Читайте так же:
Емкость оперативной памяти измеряется в

Компоненты схемы

В качестве подстроечных резисторов P3 и P4 лучше применить многооборотные компоненты типа «3296W». Причем, номиналы 250кОм и 25кОм я не нашел и вместо них поставил 200кОм и 20кОм.

Резистор R7 должен быть мощностью 0,5Вт. Шунт R4 лучше поставить мощностью 5Вт (греется здорово).

В качестве стабилитрона D2 я установил BZX55C 2V4, а в качестве стабилитрона D3 я установил 1N4740A.

Силовой транзистор 2N3055 можно заменить на более мощный NPN транзистор, например TIP35C, 2SC5200 или другой им подобный, но напрямую в плату их устанавливать нельзя, цоколевка не подходит, необходимо редактировать печатную плату, поэтому устанавливаем на проводах.

2SC5200 в лабораторном блоке питания

транзистор 2SC5200 в ЛБП

Транзисторы BC547/BC557 меняются на BC546/BC556.

Транзисторы дифференциального каскада (T5 и T6) желательно подобрать по коэффициенту передачи тока (h21э).

Подбор транзисторов по коэффициенту усиления

Печатная плата лабораторного блока питания

Печатную плату ЛБП я разводил под свои нужды и размеры компонентов, ссылка на нее под статьей. При желании вы можете ее откорректировать под свои требования.

Печатная плата лабораторного блока питания на транзисторах

Размер печатной платы 84×65 мм. На ней есть подписи порядковых номеров компонентов и их значения.

Обратите внимание на номера выводов переменных резисторов P1 и P2 (P2 относительно P1 развернут на угол 180 0 ). У меня они устанавливаются на шлейфах, поэтому проблем с этим нет.

Потенциометры лабораторного блока питания

Потенциометры не рекомендую устанавливать через разъемы, показанные ниже на фото. При потере их контакта, может произойти скачок выходного напряжения или не работать стабилизация по току, что приведет к выходу из строя T1.

Не рекомендую эти разъемы

Рядом с выходом на печатной плате ЛБП имеются ножевые клеммы с надписями «black», «yellow» и «red» для подключения китайского вольтамперметра. Если вы не применяете такой вольтамперметр, то просто впаиваем перемычки между клеммами «black» и «red».

А вообще, я не советую применять 4-разрядные китайские вольтамперметры, похожие на мой, так как у них малая частота обновления показаний. Очень неудобно им пользоваться и устанавливать необходимое значение.

Лабораторник на транзисторах

Китайский четырехразрядный вольтамперметр

Транзистор T1 соединяется с печатной платой с помощью проводов, в соответствии с цоколевкой на 2N3055.

Цоколевка транзистора 2N3055

Транзистор 2N3055 в лабораторном блоке питания

Установка 2N3055 на радиатор

Выпрямитель лабораторного блока питания

На схеме выпрямитель отсутствует. Автор схемы предусматривает его расчет индивидуально, под необходимые параметры.

Выпрямитель для ЛБП_Схема

Диодный мост я установил с токовым запасом. Мост KBU610 рассчитан на 6А 1000В, а также на его корпусе есть отверстие для крепления теплоотвода. Также подойдет и любой другой диодный мост на 4А и мощнее. При выборе рекомендую взять запас, цена от этого возрастет незначительно.

Емкость фильтра выпрямителя для лабораторного блока питания также рассчитывается индивидуально, исходя из требований пульсаций и параметров трансформатора. На моей печатной плате имеются два посадочных места под электролитические конденсаторы 3300мкФ 50В. Можно обойтись и грубым расчетом – 1000мкФ на каждый 1А.

Трансформатор, примененный мною, имеет две обмотки по 25В, и каждая обмотка рассчитана на 1,8А. Эти обмотки я соединил параллельно (соблюдая фазировку).

Вообще ток обмотки должен быть рассчитан на превышение тока нагрузки в √2 раз, то есть для нагрузки 2А обмотка должна быть рассчитана на 2,8А.

Не стоит забывать и про выпрямленное напряжение, которое после выпрямления, на холостом ходу, на конденсаторе фильтра будет иметь значение в √2 раз больше. То есть, для трансформатора напряжением 25В после выпрямления на емкости фильтра (C4 и C5) получится примерно 35В постоянного тока.

Внимание! Для данного лабораторного блока питания я настоятельно рекомендую не применять трансформатор с напряжением вторичной обмотки более 27В. Это обусловлено напряжением перехода коллектор-эмиттер транзисторов BC547/BC557 (оно составляет 45В) и другими предельными параметрами примененных компонентов.

Охлаждение лабораторного блока питания

Самым горячим элементом лабораторного блока питания является регулирующий силовой транзистор T1. Тепло, рассеиваемое на нем пропорционально разнице между входным и выходным значениями напряжения. Транзистор 2N3055 способен рассеять максимум 115Вт.

Таким образом, если на входе стабилизатора 37В, а на выходе мы установим значение 3В, то при токе 2,5А на транзисторе рассеивается примерно (не учитывая падение на шунте R4):

Это рядом с максимумом, учитывая, что транзистор T1 будет работать в линейном режиме и отвести от него такое количество тепла будет очень сложно. Выходом будет применение радиатора с вентилятором от ПК или применение радиатора с достаточно большой площадью поверхности (читать ниже).

При эксплуатации лабораторного блока питания с нагрузкой 1,5А – 2,5А на диодный мост можно установить небольшой теплоотвод в виде алюминиевой пластинки.

Если представить максимально тяжелый режим и на выходе лабораторного блока питания будет короткое замыкание, то в этом случае на транзисторе T1 упадет практически все напряжение (без учета падения на R4), пусть это падение будет равно 35В (берем по максимуму). При этом максимальный ток будет равен 2,5А. Мощность, рассеиваемая на транзисторе T1, будет примерно равна 80-90 Вт. Для такой мощности необходим радиатор с площадью поверхности 1500 – 2000 см 2 .

Запуск и налаживание лабораторного блока питания

  1. Проверить все номиналы компонентов по схеме (и печатной плате) ЛБП.
  2. Смыть все остатки флюса и других вспомогательных веществ.
  3. Подключить трансформатор к клеммам «AC». Лабораторный блок должен быть не нагружен – режим холостого хода.
  4. Ручки переменных резисторов P1 и P2 до упора повернуть по часовой стрелке (на максимум).
  5. К выходу ЛБП подключить вольтметр постоянного тока, выбрав необходимый диапазон измерения.
  6. Включить в сеть трансформатор и по вольтметру убедиться в присутствии напряжения на выходе лабораторного блока питания.
  7. Плавно вращая движок подстроечного резистора P4 установить необходимое максимальное значение. Это будет верхний предел выходного напряжения блока питания. Я установил значение 30В.Установка максимального напряжения на выходе ЛБП
  8. Нагрузить ЛБП постоянным резистором или электронной нагрузкой так, чтобы максимально возможный ток нагрузки не превышал 500мА. Я нагрузил ЛБП резистором 60 Ом 5Вт (ставим 60-100Ом) и поместил его в ванночку с водой. Путем вращения движка подстроечного резистора P3 выставить ток 200 мА (предварительно подключить амперметр постоянного тока в разрыв нагрузки). Прогнать ЛБП на этой нагрузке в течение 10-20 минут. Понаблюдать за нагревом. Напряжение при стабилизации тока просядет до нескольких вольт, это нормально.Нагрузил током 200мА
  9. Снять нагрузку. Кратковременно замкнуть выход лабораторного блока питания перемычкой. Убедившись, что ЛБП держит короткое замыкание (КЗ), при этом, ток нагрузки остается примерно равный ранее выставленному пределу (200 мА).
  10. Замыкаем выход резистором сопротивлением 4-15 Ом и плавно вращая, против часовой стрелки, движок P3 устанавливаем предельно максимальный ток ЛБП. Исходя из малых габаритов своего теплоотвода, я обошелся значением 1А. Если соблюдать все номиналы схемы, то максимум можно выставить 2,5А.Установка максимального тока ЛБП
  11. Опять снимаем нагрузку и снова устраиваем режим короткого замыкания, убеждаясь, что лабораторный блок его успешно терпит. Режим КЗ
Читайте так же:
Вентилятор на ноутбуке работает рывками

Пункты 8 и 9 рекомендую обязательно выполнять. Если не сработает схема стабилизации тока, и вы замкнете выход или нагрузите ЛБП больше чем положено, то моментально выйдет из строя силовой транзистор.

Транзисторный лабораторный блок питания

Печатная плата лабораторного блока питания на транзисторах СКАЧАТЬ

ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX

С чего начинается Родина. То есть я хотел сказать с чего начинается любое радиоэлектронное устройство, будь то сигнализация или ламповый усилитель — конечно с источника питания. И чем значительнее ток потребления девайса, тем мощнее требуется трансформатор в его БП. Но если приборы изготавливаем часто, то никаких запасов трансформаторов нам не хватит. А если ходить покупать на радиобазаре то учтите, что в последнее время стоимость такого трансформатора превысила все разумные пределы — за средний стоваттник требуют около 10уе!

блок питания ATX

Но выход всё-же есть. Это обычный, стандартный блок питания ATX от любого, даже самого простого и древнего компьютера. Несмотря на дешевизну таких БП (бэушный можно найти по фирмам и за 5уе), они обеспечивают очень приличный ток и универсальные напряжения. По линии +12В — 10А, по линии -12В — 1А, по линии 5В — 12А и по линии 3,3В — 15А. Конечно указанные значения не точные, и могут несколько отличаться в зависимости от конкретной модели БП ATX.

блок питания ATX плата с деталями внутри

Вот как раз недавно я и делал одну интересную вещь — музыкальный центр из цифровой автомагнитолы и корпуса от небольшой колонки. Всё бы хорошо, да вот учитывая приличную мощность усилителя НЧ, ток потребления центра в пиках басов достигал 8А. И даже попытка установить на питание 100 ваттный трансформатор с 4-х амперными вторичками нормального результата не дал: мало того, что на басах напряжение проваливалось на 3-4 вольта (что было хорошо заметно по затуханию ламп подсветки передней панели магнитолы), так ещё и от фона 50Гц никак не удавалось избавиться. Хоть 20000 микрофарад ставь, хоть экранируй всё, что можно.

извлечение из корпуса блока питания ATX

вид на дорожки схемы блока питания

А тут как раз на счастье, сгорел старый системник на работе. Но блок питания ATX ещё рабочий. Вот и приткнём его для магнитолы. Хотя по паспорту автомагнитолы и ихние усилители питаются напряжением 12В, но мы то знаем, что гораздо мощнее она будет звучать если подать на неё 15-17В. По крайней мере за всю мою историю ещё ни один ресивер не сгорел от лишних 5-ти вольт.

напряжения выхода в блоке питания ATX

Так как в имеющемся БП ATX напряжение 12-ти вольтовой шины было всего чуть больше 10В (может потому и не работал системник? Поздно.), будем поднимать его изменением управляющего напряжения на 2-м выводе TL494.

резистор управления напряжением блока питания ATX

Проще говоря поменяем резистор или вообще впаяем его на дорожки другого номинала. Ставлю два килоома и вот 10,5В превращаются в 17. Надо меньше? — Увеличиваем сопротивление. Стартуется компьютерный блок питания замыканием зелёного провода на любой чёрный.

как стартонуть компьютерный блок питания ATX

лишние провода из блока питания ATX

Так как места в корпусе будущего музыкального центра не много — вытаскиваем плату импульсного блока питания ATX из родного корпуса (коробочка пригодится для моего будущего проекта), и тем самым уменьшаем габариты БП в два раза. И не забываем перепаять конденсатор фильтра в БП на более высокое напряжение, а то мало ли что.

блок питания ATX замена конденсатора

свободный металлический корпус с разъёмами и кулером

А кулер? — Спросит внимательный и сообразительный радиолюбитель. Он нам не нужен. Эксперименты показали, что при токе 5А 17В в течении часа работы магнитолы на максимальной громкости (за соседей не беспокойтесь — два резистора 4 Ома 25 ватт), радиатор диодов был немного тёплый, а транзисторов — почти холодный. Так что нагрузку до 100 ватт такой БП ATX будет держать без проблем.

Форум по обсуждению материала ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX

Изучим различные типы стабилизаторов напряжения — от простых схем на стабилитроне, до транзисторных и микросхемных.

Как работает литий-ионный аккумулятор и чем он отличается по физико-химическим свойствам от других типов. Занимательная теория.

Электромагнитное реле — теория и практика применения. Обозначение, виды, основные параметры и правила эксплуатации.

В нескольких схемах рассмотрим, можно ли параллельно включать стабилизаторы напряжения, микросхемы типа LM317 и аналогичные.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector