Parus16.ru

Парус №16
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Cамодельный блок питания на 12 вольт

Cамодельный блок питания на 12 вольт

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

Корпус блока питанияКорпус блока питания Корпус блока питанияКорпус блока питания

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Низковольтная обмоткаНизковольтная обмотка Монтажная платаМонтажная плата

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мостДиодный мост

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.

Схема диодного моста

Схема диодного моста

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Читайте так же:
Внешняя wifi антенна для ноутбука

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Формулы мощности нагрузки и сопротивления

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

Блок питания со стабилизатором на микросхеме

Блок питания со стабилизатором на микросхеме

Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Транзисторы Дарлингтона типа TIP2955

Транзисторы Дарлингтона типа TIP2955

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Подключение одного составного транзистора ДарлингтонаПодключение одного составного транзистора Дарлингтона

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Как спаять блок питания на 12 вольт. Делаем простой трансформаторный БП своими руками.

cables.zip — Разводка кабелей — Справочник в формате .chm. Автор данного файла — Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru — краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.

Конденсатор 1.0 — Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

Transistors.rar — База данных по транзисторам в формате Access.

плата управления на LM324D

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Используем мостовую схему выпрямления

Использование мостового выпрямителя показано на данной схеме:

Использование мостового выпрямителя

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

как работает выпрямитель с постоянным и переменным напряжением мостового типа

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Как спаять

Для спайки мостового выпрямителя следует использовать следующую схему:

спайка мостового выпрямителя

Схемы блоков питания для ноутбуков.


— Схема универсального блока питания 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W на микросхеме LD7552.


— Схема блока питания 60W 19V 3.42A для ноутбуков, плата KM60-8M на микросхеме UC3843.

Читайте так же:
Графический процессор intel iris plus graphics 640


— Схема блока питания Delta ADP-36EH для ноутбуков 12V 3A на микросхеме DAP6A и DAS001.


— Схема блока питания Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A на микросхеме NCP1203 и TSM101, АККМ на L6561.


— Схема блока питания ADP-30JH 30W для ноутбуков 19V 1.58A на микросхеме DAP018B и TL431.


— Схема блока питания Delta ADP-40PH ABW

Delta-ADP-40MH-BDA-OUT-20V-2A.pdf — Ещё один вариант схемы блока питания Delta ADP-40MH BDA на чипах DAS01A и DAP8A.


— Схема блока питания HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A на микросхемах UC3842 и LM358.


— Схема блока питания NB-90B19-AAA 90W для ноутбуков 19V 4.74A на TEA1750.


— Схема блока питания LiteOn PA-1121-04CP на микросхеме LTA702.


— Схема блока питания Delta ADP-40MH BDA (Part No:S93-0408120-D04) на микросхеме DAS01A, DAP008ADR2G.


— Схема блока питания LiteOn 19V 4.74A на LTA301P, 103AI, PFC на микросхемах TDA4863G/FAN7530/L6561D/L6562D.


— Схема блока питания Delta ADP-90SB BB AC:110-240v DC:19V 4.7A на микросхеме DAP6A, DSA001 или TSM103A

Delta-ADP-90FB-EK-rev.01.pdf — Схема блоков питания Delta ADP-90FB AC:100-240v DC:19V 4.74A на микросхеме L6561D013TR, DAP002TR и DAS01A.

PA-1211-1.pdf — Схема блока питания LiteOn PA-1211-1 на LM339N, L6561, UC3845BN, LM358N.

Li-Shin-LSE0202A2090.pdf — Схема блоков питания Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W на микросхемах L6561, NCP1203-60 и TSM101.

GEMBIRD-model-NPA-AC1.pdf — Схема универсального блока питания Gembird NPA-AC1 AC:100-240v DC:15V/16V/18V/19V/19.5V/20V 4.5A 90W на микросхеме LD7575 и полевом транзисторе MDF9N60.

ADP-60DP-19V-3.16A.pdf — Схема блоков питания Delta ADP-60DP AC:100-240v DC:19V 3.16A на микросхеме TSM103W (он же M103A) и I6561D.


— Схема блоков питания Delta ADP-40PH BB AC:100-240v DC:19V 2.1A на микросхеме DAP018ADR2G и полевом транзисторе STP6NK60ZFP.


— Схема блоков питания Asus SADP-65KB B AC:100-240v DC:19V 3.42A на микросхеме DAP006 (DAP6A или NCP1200) и DAS001 (TSM103AI).


— Схема блоков питания Asus PA-1900-36 AC:100-240v DC:19V 4.74A на микросхеме LTA804N и LTA806N.


— Схема блоков питания Asus ADP-90CD DB AC:100-240v DC:19V 4.74A на микросхеме DAP013D и полевике 11N65C3.

PA-1211-1.pdf — Схема блоков питания Asus ADP-90SB BB AC:100-240v DC:19V 4.74A на микросхеме DAP006 (она же DAP6A) и DAS001 (она же TSM103AI).

LiteOn-PA-1900-05.pdf — Схема блока питания LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A на LTA301P и 103AI, транзистор PFC 2SK3561, транзистор силовой 2SK3569.

LiteOn-PA-1121-04.pdf — Схема блока питания LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A на LTA702, транзистор PFC 2SK3934, транзистор силовой SPA11N65C3.

Принцип работы

Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.

Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно. Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.

Вспомогательные узлы

В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.

Индикаторные светодиоды

В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.

Амперметр и вольтметр

Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.

Амперметр и вольтметр

Правила выбора комплектующих

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

Правила выбора комплектующих

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Читайте так же:
Видео раздачи вай фай с ноутбука

Электролитический конденсатор

Как правильно подключать

Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.

Стабилизатор напряжения или тока

Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.

Стабилитрон

Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.

Интегральный стабилизатор напряжения

Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.

Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.

Серия LM 78xx

Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.

Серия LM 79xx

Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.

Блок питания компьютера выход 12 вольт

Репутация:

Долго уже ищу в интеренете материал следующего характера: Грамотное подключение БП к железу.

Суть в следующем:
Большинство нынешних БП имеет в характеристиках несколько линий +12V, т. е. +12V1, +12V2, +12V3, и так далее. При этом расписана возможная нагрузка по каждой из линий, и сумарная нагрузка по всей 12 вольтовой линии.
При этом +12V1 может быть — 15A, а +12V2 и +12V3 — по 17А (у меня подобное на БП от fsp 550ват) т. е. значения по каждой линии могут быть разные.

При этом в некоторых высококачественных и дорогих БП на самом блоке питания есть таблицы по правильному подключению конкретной линии к конкретным девайсам.
Например:
+12V1 — 18A — материнка
+12V2 — 18A — 6-ти разьемный конектор на видео
+12V3 — 15A — 4-х разьемный конектор на мать и SATA и ATA устройства
+12V4 — 15А — еще что нибудь.

Так вот, производители в большинстве случаев, не расписывают "рекомендуемый способ подключения" и при этом не маркируют никаких кабелей по каналами 12V1, 12V2, 12V3, 12Vn. т. е. не понятно, какие кабели являються каким каналом из этих Vn (собственно как в моём fsp на 550 ват).
В следствие у меня возник вопрос как правильно поключать это борохло, и идея создать что-то вроде "напудствия для юзеров" по грамотному подключению БП к железу.

Прошу сильно не пинать ногами, я понимаю что есть своя голова на плечах и можно додуматься самому, тем более вверху привел пример подключения, но я не являюсь электронщиком.

Речь не — как впихнуть тот, или иной разьем! а как лучше скомбинировать устройства по этим 3-м 12 вольтовым линиям! Как правильно распределить нагрузку.

Сообщения: 2365
Откуда: Россия, Новосибирск

Репутация: 2

trol
Непонятно, к чему такая головная боль.

Разъёмы же все разные! Вы же не воткнёте коннектор от видео в материнскую плату. Вы просто физически не сможете это сделать.

Или Вы собираетесь их перепаивать, ради каких-то своих магических соображений и научить этому других пользователей?

Какой смысл заморачиваться по этому поводу, если всё втыкается только туда, куда и положено? Или я что-то не понимаю.

Репутация:

PANpredator писал(а): trol
Непонятно, к чему такая головная боль.

Разъёмы же все разные! Вы же не воткнёте коннектор от видео в материнскую плату. Вы просто физически не сможете это сделать.

Или Вы собираетесь их перепаивать, ради каких-то своих магических соображений и научить этому других пользователей?

Какой смысл заморачиваться по этому поводу, если всё втыкается только туда, куда и положено? Или я что-то не понимаю.

Дело все в том, что у меня 3-и 12вольтовых линии, на 2-х из них — 17А на одной 15А. При этом на каждом по 6-ти пиновому разьему на видео вместе с питанием SATA и ATA устройства, флопи и подобный гиморой.
При этом общая нагрузка не 49А как было-бы если прилюсовать все а, 35А. При этом на одном из кабелей еще есть 8-ми пиновый разьем для видеокарты, и 1-н 6-ти пиновый на доп питание материнки.

Читайте так же:
Блок управления вентиляторами компьютера

Я конечно могу повесить и видео и все SATA и ATA устройства и все дополнительные вентиляторы, которых у меня 4-е шт. помимо штатных и на блоке питания — на на один кабель в 18A, но зачем? И выдержит ли этот канал все это?
А если я подкину все на канал в 15А (а я не знаю какой кабель есть он) — он вообще не потянет это все.

Поэтому я и заинтересовался в этом. Я ведь прошу расписать ГРАМОТНОЕ подключение а не на — "абы как"! Ибо — "и так сойдет" меня НЕ устраивает!

Да и понятно, что пихать с силой нефпихуемые разьемы я не собираюсь. Речь не — как впихнуть тот, или иной разьем! а как лучше скомбинировать устройства по этим 3-м 12 вольтовым линиям! Ведь у меня 3-и линии и много одинаковых разьемов на каждой из них.

Сообщения: 2834
Откуда: Москва

Репутация: 48

Репутация:

Да прикольная история, но я уже дописал выше.

Речь не — как впихнуть тот, или иной разьем, а как лучше скомбинировать устройства по нескольким 12 вольтовым линиям!

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых статьях.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Вообще изначально данная статья писалась очень давно, более двух лет назад. Но в данном случае я решил, что информация из нее может быть полезна и использована на благо мастеров 3D печати.

Суть данной статьи в том, чтобы превратить обычный блок питания в маленький бесперебойник с выходом примерно 11-13.5 Вольт.

В качестве примера будет БП с мощностью 36 Ватт, но практически без доработок схема применима к более мощным БП с топологией Флайбек и с доработками к двухтактным БП.

Но сначала просто миниобзор самого БП, сорри за качество фото, снималось на паяльник.

На торце указаны технические характеристики.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Характеристики меня немного запутали, обычно или указывают полный диапазон, или если есть выбор 110/220, то соответственно есть переключатель и внутри схема сетевого выпрямителя с переключением на удвоение. Здесь никакого переключателя не было. Позже посмотрим внимательнее что внутри.

Размеры относительно небольшие.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

После вскрытия моему взору предстала печатная плата данного блока питания.

На плате распаян полноценный входной фильтр, конденсатор 33мкФ 400 В (вполне нормально для заявленной мощности), высоковольтная часть, сделанная по схемотехнике автогенератора (когда заказывал, то надеялся что будет стандартная UC3842), выходной фильтр из двух конденсаторов 470мкФ 25 Вольт и дросселя. Емкость выходного фильтра маловата, я бы поставил раза в 2 больше.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Силовой транзистор 5N60D — только в корпусе ТО-220.

Выходной диод — stps20h100ct — аналогично в корпусе ТО-220.

Схема стабилизации и обратной связи сделана на TL431.

Обратная сторона платы.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Ничего необычного, пайка среднего качества, флюс смыт, довольно аккуратно.

Но удивила маркировка на плате (она есть и с верхней стороны).

SM-24W, может изначально БП был 24 Ватта, потом решили что маловато будет и написали 36?

Первое включение, ничего не бахнуло, уже неплохо.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Нагрузил блок питания классическими неубиваемыми советскими резисторами, 10 Ом 2 штуки параллельно.

Ток около 2.5 Ампера.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Напряжение измерял после проводов к резисторам, потому немного просело.

Оставил так, пошел попить чайку и покурить, ждал что рванет.

Не рвануло, даже почти не нагрелось, градусов 40, ну может 45, специально не измерял, по ощущениям немного теплый.

Догрузил еще на 0.22 А (не нашел ничего рядом подходящего), ничего не изменилось.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Решил на этом не останавливаться и повесил на выход еще один резистор 10 Ом.

Напряжение просело до 10.05 Вольта, но блок питания продолжал упорно работать.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Дальше мне стало жалко разработчиков данного блока питания, сумевших настолько его упростить, и при этом добиться его работоспособности и я на этом этапе решил закончить стандартные эксперименты над ним.

Читайте так же:
Возвращение компьютера в исходное состояние зависло

К слову я был настроен скептически по отношению к данному блоку питания, в основном из-за его схемотехники, как то вот привык работать с более дорогими блоками питания, где есть ШИМ контроллер, контроль тока и т.п. Практика показала, что такой вариант тоже вполне жизнеспособен.

Дальше я решил перейти к нестандартной части испытаний и попробовать добиться от него того, для чего я хотел его взять. Собственно постоянные читатели моих обзоров привыкли, что я люблю не только показать товар в обзоре, а и применить его, не буду вас расстраивать и в этот раз.

Началось все с того, что позвонил товарищ и спросил, можно ли сделать небольшой бесперебойничек для питания электромагнитного замка и контроллера. Живет он в частном секторе, свет иногда ненадолго, да пропадет. Аккумулятор у него уже был, остался от компьютерного бесперебойника, большой ток уже не тянет, а с замком вполне нормально справляется.

В общем накидал небольшую добавочную платку к этому блоку питания.

Платка, схема и небольшое описание процесса.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Схема обеспечивает ограничение тока заряда (в моем случае настроено на 400мА), защиту от переразряда аккумулятора (настроено на 10 Вольт), простенькую защиту от переполюсовки аккумулятора (кроме случая если переполюсовать прямо на ходу), ну и собственно функцию подачи напряжения от аккумулятора на выход блока питания.

Перенес платку на текстолит, покрыл припоем.

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Пояснения по схеме.

С2 в принципе можно не ставить, тогда R5 и R6 заменяются одним на 9.1-10 кОм.

Он нужен для уменьшения ложных срабатываний при резком изменении нагрузки.

В идеале конечно лучше было бы домотать пару витков в дополнение ко вторичной обмотке, так как блок питания работает с перегрузом по напряжению в 20%. Испытания показали что работает все отлично, но лучше либо домотать немного вторичную обмотку, либо еще лучше — дорабатывать БП на 15 Вольт, а не на 12. В моем случае пришлось еще изменить номинал резистора в делителе обратной связи у блока питания, на схеме это R7, там стоят 4.7 кОм, я поставил 4.3 кОм, в случае применения БП на 15 Вольт, этого скорее всего делать не придется.

После сборки платы встроил ее в блок питания.

На плате обозначены точки подключения и видно место, где перерезана минусовая дорожка (над цифрой 3).

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

Блок питания 12 Вольт 3 Ампера или как самому сделать бесперебойник

В общем на мой взгляд переделка удалась, от такого БП можно питать небольшие нагрузки, до 1-1.5 Ампера. Больше не стал бы, так как БП в нештатном режиме. Если использовать БП на 15 Вольт, то ток можно поднять, но надо всегда учитывать ток заряда аккумулятора (он определяется резистором R1. 1.6 Ома дает тока заряда около 0.4 А, чем меньше сопротивление, тем больше ток и наоборот.

Если кто то несогласен с настроенным током заряда, напряжением окончания заряда и авто отключения, то это все легко меняется, если надо, объясню как это сделать.

Вы конечно спросите, при чем здесь 3D принтеры и этот мелкий блок питания.

Все просто, как я писал в самом начале, можно взять мощный блок питания, применить более мощные компоненты в плате которую я делал и получить бесперебойник, который не имеет такого понятия как ‘время переключения’, т.е. фактически ‘онлайн’. А так как печать идет очень долго, то это может быть весьма полезно в плане бесперебойности работы. Кроме того КПД такой системы заметно выше чем у традиционных УПСов.

Для применения с большими токами надо заменить на моей плате диод VD1 на любой Шоттки с током более 30 Ампер (например выпаянный из компьютерного БП) и установить его на радиатор, Реле на любое с током контактов более 20 Ампер и обмоткой с током не более 100мА (а лучше до 80). Кроме того возможно понадобится увеличение тока заряда, это делается путем уменьшения номинала резистора R1 до 0.6-1 Ом.

Есть и промышленные БП с такой функцией, по крайней мере я знаю пару таких производства Meanwell, но:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector